On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0$
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 19-31

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper estimates of weak equivalence type, as $n\to\infty$ are given for the least deviations $L_pR_n(f,[-1,1])$ of the functions $f(x)=x^s\operatorname{sign}x$ ($s=0,1,\dots$) in the metric of $L_p[-1,1]$ ($1\leqslant p\leqslant\infty$) from the rational functions of degree $\leqslant n$ ($n=1,2,\dots$). Specifically it is shown that $$ L_pR_n(x^s\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(s+\frac1p\biggr)n}\Biggr\} $$ ($s\ne0$ при $p=\infty$); in particular, \begin{gather*} L_pR_n(\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\frac np}\Biggr\}\qquad(1\leqslant p\infty), \\ L_pR_n(|x|,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(1+\frac1p\biggr)n}\Biggr\}\qquad(1\leqslant p\leqslant\infty). \end{gather*} Bibliography: 9 titles.
@article{SM_1977_32_1_a1,
     author = {N. S. Vyacheslavov},
     title = {On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0<p\leqslant\infty$},
     journal = {Sbornik. Mathematics},
     pages = {19--31},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/}
}
TY  - JOUR
AU  - N. S. Vyacheslavov
TI  - On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 19
EP  - 31
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/
LA  - en
ID  - SM_1977_32_1_a1
ER  - 
%0 Journal Article
%A N. S. Vyacheslavov
%T On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0
%J Sbornik. Mathematics
%D 1977
%P 19-31
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/
%G en
%F SM_1977_32_1_a1
N. S. Vyacheslavov. On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0