On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0$
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 19-31
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper estimates of weak equivalence type, as $n\to\infty$ are given for the least deviations $L_pR_n(f,[-1,1])$ of the functions $f(x)=x^s\operatorname{sign}x$ ($s=0,1,\dots$) in the metric of $L_p[-1,1]$ ($1\leqslant p\leqslant\infty$) from the rational functions of degree $\leqslant n$ ($n=1,2,\dots$). Specifically it is shown that
$$
L_pR_n(x^s\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(s+\frac1p\biggr)n}\Biggr\}
$$
($s\ne0$ при $p=\infty$); in particular,
\begin{gather*}
L_pR_n(\operatorname{sign}x,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\frac np}\Biggr\}\qquad(1\leqslant p\infty),
\\
L_pR_n(|x|,[-1,1])\asymp n^\frac1{2p}\exp\Biggl\{-\pi\sqrt{\biggl(1+\frac1p\biggr)n}\Biggr\}\qquad(1\leqslant p\leqslant\infty).
\end{gather*} Bibliography: 9 titles.
@article{SM_1977_32_1_a1,
author = {N. S. Vyacheslavov},
title = {On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0<p\leqslant\infty$},
journal = {Sbornik. Mathematics},
pages = {19--31},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/}
}
TY - JOUR
AU - N. S. Vyacheslavov
TI - On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0
JO - Sbornik. Mathematics
PY - 1977
SP - 19
EP - 31
VL - 32
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/
LA - en
ID - SM_1977_32_1_a1
ER -
%0 Journal Article
%A N. S. Vyacheslavov
%T On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0
%J Sbornik. Mathematics
%D 1977
%P 19-31
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a1/
%G en
%F SM_1977_32_1_a1
N. S. Vyacheslavov. On the least deviations of the function $\operatorname{sign}x$ and its primitives from the rational functions in the $L_p$~metrics, $0