On the theory of homogeneous random fields
Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 1-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Infinite-dimensional random fields, homogeneous in the wide sense, are considered; conditions for regularity and minimality are investigated, and a description of wide-sense Markov (minimal) fields is given. Bibliography: 18 titles.
@article{SM_1977_32_1_a0,
     author = {Yu. A. Rozanov},
     title = {On the theory of homogeneous random fields},
     journal = {Sbornik. Mathematics},
     pages = {1--18},
     year = {1977},
     volume = {32},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_32_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Rozanov
TI  - On the theory of homogeneous random fields
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 1
EP  - 18
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_32_1_a0/
LA  - en
ID  - SM_1977_32_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Rozanov
%T On the theory of homogeneous random fields
%J Sbornik. Mathematics
%D 1977
%P 1-18
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_32_1_a0/
%G en
%F SM_1977_32_1_a0
Yu. A. Rozanov. On the theory of homogeneous random fields. Sbornik. Mathematics, Tome 32 (1977) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/SM_1977_32_1_a0/

[1] A. N. Kolmogorov, “Statsionarnye posledovatelnosti v gilbertovom prostranstve”, Byull. MGU, 2:6 (1941), 1–40 | MR | Zbl

[2] Yu. A. Rozanov, Statsionarnye sluchainye protsessy, Fizmatgiz, Moskva, 1963

[3] Yu. A. Rozanov, Teoriya obnovlyayuschikh protsessov, izd-vo «Nauka», Moskva, 1974 | MR

[4] Tszyan-Ize-Pei, “O lineinoi ekstrapolyatsii nepreryvnogo odnorodnogo sluchainogo polya”, Teoriya veroyatn., 2:1 (1957), 60–91 | MR

[5] M. I. Yadrenko, “Ob izotropnykh gaussovskikh polyakh markovskogo tipa na sfere”, DAN USSR, 1959, 231–236

[6] E. Wong, “Homogeneous Gauss-Markov Fields”, Ann. Math. Stat., 40:5 (1969), 1625–1634 | DOI | MR | Zbl

[7] P. Levy, “A special problem of brownian motion, and a general theory of gaussian random fields”, Proc. Sd Berkeley Symp. Math. Stat. Prob., 2, 1956, 133–175 | MR | Zbl

[8] N. N. Chentsov, “Mnogoparametricheskoe brounovskoe dvizhenie Levi i obobschennyi belyi shum”, Teoriya veroyatn., 2:2 (1957), 281–292

[9] H. P. McKean, “Brownian motion with a several dimensional time”, Teoriya veroyatn., 8:4 (1963), 357–378 | MR | Zbl

[10] Yu. A. Rozanov, “O gaussovskikh polyakh s zadannymi uslovnymi raspredeleniyami”, Teoriya veroyatn., 12:3 (1967), 433–443 | MR | Zbl

[11] L. D. Pitt, “A Markov property for Gaussian processes with a multidimensional parameter”, Arch. Rat. Mech. Anal., 43 (1971), 367–391 | DOI | MR | Zbl

[12] G. M. Molchan, “O kharakterizatsii gaussovskikh polei s markovskim svoistvom”, DAN SSSR, 197:4 (1971), 784–787 | Zbl

[13] S. Kotani, “On a Markov property for stationary Gaussian processes with a multidimensional parameter”, Proc. 2-nd Japan-USSR Symp. Prob., 1973, 239–249 | MR

[14] G. Kallianpur, U. Mandrekar, “The Markov property for generalized Gaussian random fields”, Ann. Inst. Fourier, 24:2 (1974), 143–167 | MR | Zbl

[15] G. M. Molchan, “$L$-markovskie gaussovskie polya”, DAN SSSR, 215:5 (1974), 1054–1057 | Zbl

[16] L. D. Pitt, “Stationary Gaussian - Markov fields on $R^n$ with deterministic component”, J. Multivariate Analysis, 5:3 (1975), 300–313 | DOI | MR

[17] O. I. Presnyakova, “Ob analiticheskoi strukture podprostranstv, porozhdaemykh sluchainymi odnorodnymi polyami”, DAN SSSR, 192:2 (1970), 279–281 | Zbl

[18] O. A. Orebkova, “Nekotorye problemy ekstrapolyatsii sluchainykh polei”, DAN SSSR, 196:4 (1971), 776–778