On stably free modules
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we show that if $A$ is an affine algebra of dimension $n$ over an algebraically closed field, then each stably free module whose rank is greater than or equal to $n$ is free. We also obtain some results on orbits of unimodular rows. Bibliography: 17 titles.
@article{SM_1977_31_4_a3,
     author = {A. A. Suslin},
     title = {On stably free modules},
     journal = {Sbornik. Mathematics},
     pages = {479--491},
     year = {1977},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - On stably free modules
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 479
EP  - 491
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/
LA  - en
ID  - SM_1977_31_4_a3
ER  - 
%0 Journal Article
%A A. A. Suslin
%T On stably free modules
%J Sbornik. Mathematics
%D 1977
%P 479-491
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/
%G en
%F SM_1977_31_4_a3
A. A. Suslin. On stably free modules. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/

[1] Kh. Bass, Algebraicheskaya $K$-teoriya, izd-vo «Mir», Moskva, 1973 | MR

[2] H. Bass, Liberation des modules projectifs sur certain anneaux de polynomes, Sem. Bourbaki, 448, 1973/74

[3] Kh. Bass, Dzh. Milnor, Zh. P. Serr, “Reshenie kongruentsproblemy dlya $SL_n$ $(n\geqslant3)$ i $Sp_{2n}$ $(n\geqslant2)$”, Matematika, 14:6 (1970), 64–128 ; 15:1 (1971), 44–60 | Zbl | Zbl

[4] H. Bass, J. Tate, The Milnor ring of a global field, Lect. Notes in Math., 342, 1972 | MR

[5] N. Burbaki, Kommutativnaya algebra, izd-vo «Mir», Moskva, 1971 | MR

[6] L. N. Vasershtein, “O stabilizatsii obschei gruppy nad koltsom”, Matem. sb., 79(121) (1969), 405–424

[7] L. N. Vasershtein, A. A. Suslin, “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $K$-teoriya”, Funkts. analiz, 8:2 (1974), 65–66 | MR

[8] L. N. Vasershtein, A. A. Suslin, “Problema Serra o proektivnykh modulyakh nad koltsami mnogochlenov i algebraicheskaya $K$-teoriya”, Izv. AN SSSR, seriya matem., 40 (1976), 993–1054 | MR

[9] S. Leng, Algebra, izd-vo «Mir», Moskva, 1968

[10] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, izd-vo «Mir», Moskva, 1974 | MR

[11] D. Quillen, “Projective modules over polynomial rings”, Inv. Math., 35 (1976) | MR

[12] R. G. Swan, “A cancellation theorem for projective modules in the metastable range”, Inv. Math., 27 (1974), 23–43 | DOI | MR | Zbl

[13] R. G. Swan, “Vektor bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR | Zbl

[14] R. G. Swan, J. Towber, “A class of projective modules which are nearly free”, J. Algebra, 36 (1975), 427–434 | DOI | MR | Zbl

[15] A. A. Suslin, “O proektivnykh modulyakh nad koltsami mnogochlenov”, Matem. sb., 93(135) (1974), 588–595 | MR | Zbl

[16] A. A. Suslin, O strukture proektivnykh modulei nad koltsami mnogochlenov, Avtoreferat kand. dissertatsii, Leningrad, 1975

[17] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, izd-vo «Nauka», Moskva, 1972 | MR