On stably free modules
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that if $A$ is an affine algebra of dimension $n$ over an algebraically closed field, then each stably free module whose rank is greater than or equal to $n$ is free. We also obtain some results on orbits of unimodular rows. Bibliography: 17 titles.
@article{SM_1977_31_4_a3,
     author = {A. A. Suslin},
     title = {On stably free modules},
     journal = {Sbornik. Mathematics},
     pages = {479--491},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - On stably free modules
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 479
EP  - 491
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/
LA  - en
ID  - SM_1977_31_4_a3
ER  - 
%0 Journal Article
%A A. A. Suslin
%T On stably free modules
%J Sbornik. Mathematics
%D 1977
%P 479-491
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/
%G en
%F SM_1977_31_4_a3
A. A. Suslin. On stably free modules. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/