On stably free modules
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we show that if $A$ is an affine algebra of dimension $n$ over an algebraically closed field, then each stably free module whose rank is greater than or equal to $n$ is free. We also obtain some results on orbits of unimodular rows.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1977_31_4_a3,
     author = {A. A. Suslin},
     title = {On stably free modules},
     journal = {Sbornik. Mathematics},
     pages = {479--491},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/}
}
                      
                      
                    A. A. Suslin. On stably free modules. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 479-491. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a3/
