Selfadjoint dilatation of the dissipative Shrödinger operator and its resolution in terms of eigenfunctions
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 457-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The object of the present work is the imbedding of the spectral theory for the dissipative Schrödinger operator $L$ with absolutely continuous spectrum acting in the Hilbert space $H=L_2(R^3)$ in the spectral theory of a model operator and the proof of the theorem on expansion in terms of eigenfunctions. The imbedding mentioned is achieved by constructing a selfadjoint dilation $\mathscr L$ of the operator $L$. In the so-called incoming spectral representation of this dilation the operator becomes the corresponding model operator. Next, a system of eigenfunctions of the dilation – the “radiating” eigenfunctions – is constructed. From these a canonical system of eigenfunctions for the absolutely continuous spectrum of the operator and its spectral projections are obtained by “orthogonal projection” onto $H$. Bibliography: 22 titles.
@article{SM_1977_31_4_a2,
     author = {B. S. Pavlov},
     title = {Selfadjoint dilatation of the dissipative {Shr\"odinger} operator and its resolution in terms of eigenfunctions},
     journal = {Sbornik. Mathematics},
     pages = {457--478},
     year = {1977},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a2/}
}
TY  - JOUR
AU  - B. S. Pavlov
TI  - Selfadjoint dilatation of the dissipative Shrödinger operator and its resolution in terms of eigenfunctions
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 457
EP  - 478
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_4_a2/
LA  - en
ID  - SM_1977_31_4_a2
ER  - 
%0 Journal Article
%A B. S. Pavlov
%T Selfadjoint dilatation of the dissipative Shrödinger operator and its resolution in terms of eigenfunctions
%J Sbornik. Mathematics
%D 1977
%P 457-478
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_31_4_a2/
%G en
%F SM_1977_31_4_a2
B. S. Pavlov. Selfadjoint dilatation of the dissipative Shrödinger operator and its resolution in terms of eigenfunctions. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 457-478. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a2/

[1] V. A. Marchenko, “Razlozhenie po sobstvennym funktsiyam nesamosopryazhennykh singulyarnykh differentsialnykh operatorov vtorogo poryadka”, Matem. sb., 52(94) (1960), 739–788

[2] B. S. Pavlov, “K spektralnoi teorii nesamosopryazhennykh differentsialnykh operatorov”, DAN SSSR, 146:6 (1962), 1267–1270 | MR

[3] V. E. Lyantse, “O differentsialnom operatore so spektralnymi osobennostyami. I; II”, Matem. sb., 64 (106) (1964), 521–561 | MR | Zbl

[4] M. G. Gasymov, F. G. Maksudov, “O glavnoi chasti rezolventy nesamosopryazhennykh operatorov v okrestnosti spektralnykh osobennostei”, Funkts. analiz, 6:3 (1972), 16–24 | MR | Zbl

[5] K. Mochizuki, “On the large perturbation by a class of nonselfadjoint operators”, J. Math. Soc. Japan, 19 (1967), 123–158 | MR | Zbl

[6] K. Mochizuki, “Eigenfunction expansion, associated with Schrödinger operator with a complex potential and the scattering inverse problem”, Proc. Japan Acad., 43 (1967), 638–643 | DOI | MR | Zbl

[7] S. Mizohata, K. Mochizuki, “On the priciple of limiting amplitude for dissipative wave equation”, J. Math. Kyoto Univ., 6 (1967), 109–127 | MR

[8] P. Laks, R. Fillips, Teoriya rasseyaniya, izd-vo «Mir», Moskva, 1971 | MR

[9] P. Lax, R. Phillips, “Scattering theory for dissipative hyperbolic system”, J. Func. Analysis, 14 (1973), 172–235 | DOI | MR | Zbl

[10] G. Schmidt, “Spectral and scattering theory for Maxwell's equations”, Arch. Rat. Mech. Anal., 28:4 (1968), 283–322 | DOI | MR

[11] B. S.-Nad, Ch. Foiash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, izd-vo «Mir», Moskva, 1971

[12] V. M. Adamyan, D. Z. Arov, “Ob unitarnykh stsepleniyakh poluunitarnykh operatorov”, Matem. issledovaniya, 1, no. 2, Kishinev, 1966, 3–64

[13] B. S. Pavlov, “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR, seriya matem., 39:1 (1975), 123–148 | MR | Zbl

[14] A. K. Nikolskii, B. S. Pavlov, “Bazisy iz sobstvennykh vektorov vpolne neunitarnykh szhatii i kharakteristicheskaya funktsiya”, Izv. AN SSSR, seriya matem., 34 (1970), 90–133 | MR

[15] B. S. Pavlov, “O razlozhenii po sobstvennym funktsiyam absolyutno nepreryvnogo spektra dissipativnogo operatora”, Vestnik LGU, seriya matem., mekhanika, astronomiya, 1975, no. 1, 130–137 | Zbl

[16] B. S. Pavlov, “O sovmestnoi polnote sistemy sobstvennykh funktsii szhatiya i ego sopryazhennogo”, Problemy matem. fiziki, no. 5, izd-vo LGU, 1971, 101–112

[17] A. Ya. Povzner, “O razlozhenii proizvolnoi funktsii po sobstvennym funktsiyam operatora $\Delta u+cu$”, Matem. sb., 32(74) (1953), 109–156 | MR | Zbl

[18] B. S. Pavlov, “Samosopryazhennaya dilatatsiya dissipativnogo operatora Shredingera i razlozhenie po sobstvennym funktsiyam”, Funkts. analiz, 9:2 (1975), 57–88

[19] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, «Naukova dumka», Kiev, 1965 | MR

[20] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, izd-vo «Mir», Moskva, 1975

[21] L. A. Sakhnovich, “Dissipativnye operatory s absolyutno nepreryvnym spektrom”, Trudy Mosk. matem. ob-va, XIX (1968), 213–270

[22] B. S. Pavlov, “Nepreryvnyi spektr rezonansov na nefizicheskom liste”, DAN SSSR, 206:6 (1972), 1301–1304 | Zbl