@article{SM_1977_31_4_a1,
author = {V. V. Napalkov},
title = {On solutions of equations of infinite order in the real domain},
journal = {Sbornik. Mathematics},
pages = {445--455},
year = {1977},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a1/}
}
V. V. Napalkov. On solutions of equations of infinite order in the real domain. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 445-455. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a1/
[1] M. Neymark, “On the Laplace transform of functionals on classe of infinitely differentiable functions”, Ark. math., 7:6 (1969), 577–594 | DOI | MR | Zbl
[2] Nerasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, izd-vo «Mir», Moskva, 1971
[3] G. Valiron, “Sur les solutions des equations differentielles lineaires d'ordre infini et á coefficients”, Ann. de l'Ecole Norm. Sup., 46:1 (1929), 25–33 | MR
[4] Yu. F. Korobeinik, “O beskonechno differentsiruemykh resheniyakh lineinogo differentsialnogo uravneniya beskonechnogo poryadka”, Sib. matem. zh., 6:3 (1965), 516–527 | MR
[5] A. F. Leontev, “O sposobakh resheniya uravneniya beskonechnogo poryadka v deistvitelnoi oblasti”, Izv. AN SSSR, seriya matem., 34 (1970), 849–880 | MR
[6] V. V. Napalkov, “Ob odnoi teoreme edinstvennosti v teorii funktsii mnogikh kompleksnykh peremennykh i odnorodnykh uravneniyakh tipa svertki v trubchatykh oblastyakh $\mathbf{C}^n$”, Izv. AN SSSR, seriya matem., 40 (1976), 115–132 | MR | Zbl
[7] B. V. Shabat, Vvedenie v kompleksnyi analiz, izd-vo «Nauka», Moskva, 1969 | MR
[8] L. Shvarts, Analiz, t. 1, izd-vo «Mir», Moskva, 1972
[9] B. Malgrange, “Existence et approximation des solution des equations aux derivees partielles et des equations de convolution”, Ann. Inst. Fourier, 6 (1955), 271–354 | MR
[10] A. Martineau, “Equations differentielles d'ordre infini”, Bull. Soc. Math. France, 95 (1967), 109–154 | MR | Zbl
[11] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1968 | MR
[12] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, izd-vo «Nauka», Moskva, 1973 | MR