On solutions of equations of infinite order in the real domain
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 445-455
Voir la notice de l'article provenant de la source Math-Net.Ru
A homogeneous partial differential equation of infinite order with constant coefficients of the form
\begin{equation}
L[y]\equiv\sum_{|\alpha|\geqslant0}a_\alpha\frac{\partial^{|\alpha|}}{\partial x^\alpha}\,y(x)=0,\qquad\alpha=(\alpha_1,\dots,\alpha_n),
\end{equation}
is considered, where $y(x)$ is an infinitely differentiate function that is defined on a convex domain $\Omega\subset R^n$ and satisfies the estimate
$$
\max\biggl|\frac{\partial^{|\alpha|}y(x)}{\partial x^\alpha}\biggr|\leqslant Nh^{|\alpha|}M_{|\alpha|},\qquad N=N(K,y),\quad h=h(K,y),
$$
on every compact set $K\Subset\Omega$. It is shown under certain conditions on the sequence $M_{|\alpha|}$ that every solution of equation (1) can be approximated by the exponential solutions of this equation.
Bibliography: 12 titles.
@article{SM_1977_31_4_a1,
author = {V. V. Napalkov},
title = {On solutions of equations of infinite order in the real domain},
journal = {Sbornik. Mathematics},
pages = {445--455},
publisher = {mathdoc},
volume = {31},
number = {4},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a1/}
}
V. V. Napalkov. On solutions of equations of infinite order in the real domain. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 445-455. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a1/