Compound operator equations in generalized derivatives and their applications to Appell sequences
Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 425-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ be a vector space of sequences of numbers, containing all of the basis vectors $e_k$, with the Köthe topology $\nu$; let $\{f_k\}$ be a fixed sequence of nonzero complex numbers; let $D$ be a Gel'fond–Leont'ev generalized differentiation operator: $$ (Dc)_k=\frac{f_k}{f_{k+1}}c_{k+1},\qquad k=0,1,2,\dots, $$ and let $p$ be an operator of the form $(p_c)_m=(-1)^m, m=0,1,\dots$ . In this work there is an investigation of an infinite-order operator $$ Lc=\sum_{k=0}^\infty a_kD^kc+\sum_{k=0}^\infty b_kD^kP_c. $$ Under rather general assumptions it is shown that $L_0$ is an epimorphism of $(E,\nu)$, and the kernel is described; conditions are established for $L_0$ to be an isomorphism of $(E,\nu)$. On the basis of these results criteria are found for an Appell sequence to be a quasi-power basis or representing system in $(E,\nu)$. Bibliography: 16 titles.
@article{SM_1977_31_4_a0,
     author = {Yu. F. Korobeinik},
     title = {Compound operator equations in generalized derivatives and their applications to {Appell} sequences},
     journal = {Sbornik. Mathematics},
     pages = {425--443},
     year = {1977},
     volume = {31},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_4_a0/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - Compound operator equations in generalized derivatives and their applications to Appell sequences
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 425
EP  - 443
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_4_a0/
LA  - en
ID  - SM_1977_31_4_a0
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T Compound operator equations in generalized derivatives and their applications to Appell sequences
%J Sbornik. Mathematics
%D 1977
%P 425-443
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1977_31_4_a0/
%G en
%F SM_1977_31_4_a0
Yu. F. Korobeinik. Compound operator equations in generalized derivatives and their applications to Appell sequences. Sbornik. Mathematics, Tome 31 (1977) no. 4, pp. 425-443. http://geodesic.mathdoc.fr/item/SM_1977_31_4_a0/

[1] Yu. A. Kazmin, “O polinomakh Appelya”, Matem. zametki, 6:2 (1969), 161–172 | MR

[2] Yu. A. Kazmin, “O razlozheniyakh v ryady po polinomam Appelya”, Matem. zametki, 5:5 (1969), 509–520 | MR

[3] I. F. Lokhin, “Ob odnom integralnom predstavlenii tselykh funktsii pervogo poryadka i normalnogo tipa”, Trudy Mosk. Energ. in-ta, 1974, no. 201, 94–99

[4] V. B. Ozhegov, “O nekotorykh ekstremalnykh svoistvakh obobschennykh polinomov Appelya”, DAN SSSR, 159:5 (1967), 985–987

[5] M. G. Khaplanov, Lineinye operatory v analiticheskikh prostranstvakh i ikh prilozheniya, dokt. dissertatsiya, Kharkov, 1960

[6] J. Köthe, Topologische lineare Räume, Springer-Verlag, Berlin–Vienna, 1960 | Zbl

[7] Yu. F. Korobeinik, “Operatornye uravneniya beskonechnogo poryadka s postoyannymi koeffitsientami”, Sib. matem. zh., XVII:3 (1976), 571–585 | MR

[8] Yu. F. Korobeinik, “O predstavlenii lineinykh operatorov, nepreryvno deistvuyuschikh v prostranstvakh analiticheskikh funktsii i perestanovochnykh s operatorom differentsirovaniya”, Izv. na matem. in-t Bolgarskoi AN, XV (1973), 359–388

[9] Yu. F. Korobeinik, “Operatory obobschennogo differentsirovaniya v prostranstvakh posledovatelnostei”, Izv. Sev. Kavkaz. nauchn. tsentra vysshei shkoly, seriya estestv. nauk, 1976, no. 3, 3–8 | MR

[10] A. O. Gelfond, A. F. Leontev, “Ob odnom obobschenii ryada Fure”, Matem. sb., 29(71) (1951), 477–500 | MR

[11] Yu. N. Frolov, “O neodnorodnykh uravneniyakh beskonechnogo poryadka v obobschennykh proizvodnykh”, Vestnik MGU, 1960, no. 4, 3–13 | MR

[12] Yu. F. Korobeinik, “Obschii vid perestanovochnykh s operatorom differentsirovaniya lineinykh operatorov v prostranstvakh analiticheskikh funktsii”, Funkts. analiz, 7:1 (1973), 74–76 | MR | Zbl

[13] R. Edvards, Funktsionalnyi analiz, izd-vo «Mir», Moskva, 1969

[14] B. Malgrange, “Existence et approximation des solutions des equations aux derivèes partielles et des equations convolution”, Ann. Inst. Fourier, 6 (1955), 271–354 | MR

[15] Yu. F. Korobeinik, “O nekotorykh kharakteristicheskikh svoistvakh differentsialnykh operatorov beskonechnogo poryadka”, Izv. AN SSSR, seriya matem., 30:5 (1966), 993–1016 | MR

[16] V. V. Morzhakov, “K teorii primenimosti differentsialnykh operatorov beskonechnogo poryadka v lrostranstvakh funktsii neskolkikh kompleksnykh peremennykh”, Litov. matem. sb., XI:4 (1971), 843–859