On the hypoellipticity of infinite-dimensional differential operators
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 269-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An infinite-dimensional differential operator with constant coefficients is considered in the paper. A number of necessary conditions for the hypoellipticity of such an operator are proved. These conditions are also sufficient for the hypoellipticity of finite-dimensional differential operators. Bibliography: 10 titles.
@article{SM_1977_31_2_a9,
     author = {N. N. Frolov},
     title = {On the hypoellipticity of infinite-dimensional differential operators},
     journal = {Sbornik. Mathematics},
     pages = {269--278},
     year = {1977},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/}
}
TY  - JOUR
AU  - N. N. Frolov
TI  - On the hypoellipticity of infinite-dimensional differential operators
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 269
EP  - 278
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/
LA  - en
ID  - SM_1977_31_2_a9
ER  - 
%0 Journal Article
%A N. N. Frolov
%T On the hypoellipticity of infinite-dimensional differential operators
%J Sbornik. Mathematics
%D 1977
%P 269-278
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/
%G en
%F SM_1977_31_2_a9
N. N. Frolov. On the hypoellipticity of infinite-dimensional differential operators. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/

[1] Yu. L. Daletskii, “Beskonechnomernye ellipticheskie operatory i svyazannye s nimi parabolicheskie uravneniya”, Uspekhi matem. nauk, XXII:4 (136) (1967), 3–54

[2] M. I. Vishik, “Parametriks ellipticheskikh operatorov s beskonechnym chislom nezavisimykh peremennykh”, Uspekhi matem. nauk, XXVI:2 (158) (1971), 155–174

[3] P. M. Blekher, M. I. Vishik, “Ob odnom klasse psevdodifferentsialnykh operatorov s beskonechnym chislom peremennykh i ikh prilozheniyakh”, Matem. sb., 86 (128) (1971), 446–494 | Zbl

[4] M. I. Vishik, A. V. Marchenko, “Kraevye zadachi dlya ellipticheskikh i parabolicheskikh operatorov vtorogo poryadka na beskonechnomernykh mnogoobraziyakh s kraem”, Matem. sb., 90 (132) (1973), 331–337

[5] N. N. Frolov, O zadache Dirikhle dlya ellipticheskikh differentsialnykh uravnenii s beskonechnomernymi operatorami, Dissertatsiya, Voronezh, 1970

[6] N. N. Frolov, “O zadache Dirikhle dlya ellipticheskogo operatora v tsilindricheskoi oblasti gilbertova prostranstva”, Matem. sb., 92 (134) (1973), 430–445 | MR | Zbl

[7] L. Gross, “Potential theory on Hilbert Space”, J. funct. analysis, 1:1 (1967), 123–181 | DOI | MR | Zbl

[8] Yu. L. Daletskii, S. N. Paramonova, “Ob odnoi formule teorii gaussovykh mer k otsenke stokhasticheskikh integralov”, Teoriya veroyatn., 1974, no. 4, 844–848

[9] G. E. Shilov, Fan Dyk Tin, Integral, mera i proizvodnaya na lineinykh prostranstvakh, izd-vo «Nauka», Moskva, 1967 | MR

[10] G. E. Shilov, Matematicheskii analiz (vtoroi spetsialnyi kurs), izd-vo «Nauka», Moskva, 1965 | MR