@article{SM_1977_31_2_a9,
author = {N. N. Frolov},
title = {On the hypoellipticity of infinite-dimensional differential operators},
journal = {Sbornik. Mathematics},
pages = {269--278},
year = {1977},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/}
}
N. N. Frolov. On the hypoellipticity of infinite-dimensional differential operators. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 269-278. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a9/
[1] Yu. L. Daletskii, “Beskonechnomernye ellipticheskie operatory i svyazannye s nimi parabolicheskie uravneniya”, Uspekhi matem. nauk, XXII:4 (136) (1967), 3–54
[2] M. I. Vishik, “Parametriks ellipticheskikh operatorov s beskonechnym chislom nezavisimykh peremennykh”, Uspekhi matem. nauk, XXVI:2 (158) (1971), 155–174
[3] P. M. Blekher, M. I. Vishik, “Ob odnom klasse psevdodifferentsialnykh operatorov s beskonechnym chislom peremennykh i ikh prilozheniyakh”, Matem. sb., 86 (128) (1971), 446–494 | Zbl
[4] M. I. Vishik, A. V. Marchenko, “Kraevye zadachi dlya ellipticheskikh i parabolicheskikh operatorov vtorogo poryadka na beskonechnomernykh mnogoobraziyakh s kraem”, Matem. sb., 90 (132) (1973), 331–337
[5] N. N. Frolov, O zadache Dirikhle dlya ellipticheskikh differentsialnykh uravnenii s beskonechnomernymi operatorami, Dissertatsiya, Voronezh, 1970
[6] N. N. Frolov, “O zadache Dirikhle dlya ellipticheskogo operatora v tsilindricheskoi oblasti gilbertova prostranstva”, Matem. sb., 92 (134) (1973), 430–445 | MR | Zbl
[7] L. Gross, “Potential theory on Hilbert Space”, J. funct. analysis, 1:1 (1967), 123–181 | DOI | MR | Zbl
[8] Yu. L. Daletskii, S. N. Paramonova, “Ob odnoi formule teorii gaussovykh mer k otsenke stokhasticheskikh integralov”, Teoriya veroyatn., 1974, no. 4, 844–848
[9] G. E. Shilov, Fan Dyk Tin, Integral, mera i proizvodnaya na lineinykh prostranstvakh, izd-vo «Nauka», Moskva, 1967 | MR
[10] G. E. Shilov, Matematicheskii analiz (vtoroi spetsialnyi kurs), izd-vo «Nauka», Moskva, 1965 | MR