On finite approximability of superintuitionistic logics
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268
Cet article a éte moissonné depuis la source Math-Net.Ru
Finite approximability is proved for superintuitionistic propositional logics generated by formulas satisfying a certain sufficient condition. As a corollary, one obtains the finite approximability of logics generated by formulas with one variable. A formula with two variables is constructed which generates a logic not finitely approximable. All previously known finitely approximable logics have been generated by formulas in three or more variables (see RZhMat., 1971, 5A64 and 1972, 6A84). Figures: 1. Bibliography: 6 titles.
@article{SM_1977_31_2_a8,
author = {S. K. Sobolev},
title = {On finite approximability of superintuitionistic logics},
journal = {Sbornik. Mathematics},
pages = {257--268},
year = {1977},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/}
}
S. K. Sobolev. On finite approximability of superintuitionistic logics. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/
[1] A. V. Kuznetsov, V. Ya. Gerchiu, “O superintuitsionistskikh logikakh i finitnoi approksimiruemosti”, DAN SSSR, 195:5 (1970), 1029–1032 | Zbl
[2] V. Ya. Gerchiu, “O finitnoi approksimiruemosti”, Matem. issledovaniya, 7:1 (1972), 186–192 | MR | Zbl
[3] I. Nishimura, “On formulas of variables”, J. Symb. Log., 25:4 (1960), 327–331 | DOI | MR | Zbl
[4] A. Diego, “Sur les algèbres de Hilbert”, Collect. log. math., Ser. A, 21, Paris, 1966 | MR
[5] C. G. McKay, “Decidability of certain intermediate propositional logics”, J. Symb. Log., 33:2 (1968), 258–264 | DOI | MR | Zbl
[6] K. Fine, “Logic containing $\mathrm{S}4$ without fmp”, Lect. notes in Math., 255 (1972), 98–102 | DOI | MR | Zbl