On finite approximability of superintuitionistic logics
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Finite approximability is proved for superintuitionistic propositional logics generated by formulas satisfying a certain sufficient condition. As a corollary, one obtains the finite approximability of logics generated by formulas with one variable. A formula with two variables is constructed which generates a logic not finitely approximable. All previously known finitely approximable logics have been generated by formulas in three or more variables (see RZhMat., 1971, 5A64 and 1972, 6A84).
Figures: 1.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1977_31_2_a8,
     author = {S. K. Sobolev},
     title = {On finite approximability of superintuitionistic logics},
     journal = {Sbornik. Mathematics},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/}
}
                      
                      
                    S. K. Sobolev. On finite approximability of superintuitionistic logics. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/
