On finite approximability of superintuitionistic logics
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite approximability is proved for superintuitionistic propositional logics generated by formulas satisfying a certain sufficient condition. As a corollary, one obtains the finite approximability of logics generated by formulas with one variable. A formula with two variables is constructed which generates a logic not finitely approximable. All previously known finitely approximable logics have been generated by formulas in three or more variables (see RZhMat., 1971, 5A64 and 1972, 6A84). Figures: 1. Bibliography: 6 titles.
@article{SM_1977_31_2_a8,
     author = {S. K. Sobolev},
     title = {On finite approximability of superintuitionistic logics},
     journal = {Sbornik. Mathematics},
     pages = {257--268},
     year = {1977},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/}
}
TY  - JOUR
AU  - S. K. Sobolev
TI  - On finite approximability of superintuitionistic logics
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 257
EP  - 268
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/
LA  - en
ID  - SM_1977_31_2_a8
ER  - 
%0 Journal Article
%A S. K. Sobolev
%T On finite approximability of superintuitionistic logics
%J Sbornik. Mathematics
%D 1977
%P 257-268
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/
%G en
%F SM_1977_31_2_a8
S. K. Sobolev. On finite approximability of superintuitionistic logics. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a8/

[1] A. V. Kuznetsov, V. Ya. Gerchiu, “O superintuitsionistskikh logikakh i finitnoi approksimiruemosti”, DAN SSSR, 195:5 (1970), 1029–1032 | Zbl

[2] V. Ya. Gerchiu, “O finitnoi approksimiruemosti”, Matem. issledovaniya, 7:1 (1972), 186–192 | MR | Zbl

[3] I. Nishimura, “On formulas of variables”, J. Symb. Log., 25:4 (1960), 327–331 | DOI | MR | Zbl

[4] A. Diego, “Sur les algèbres de Hilbert”, Collect. log. math., Ser. A, 21, Paris, 1966 | MR

[5] C. G. McKay, “Decidability of certain intermediate propositional logics”, J. Symb. Log., 33:2 (1968), 258–264 | DOI | MR | Zbl

[6] K. Fine, “Logic containing $\mathrm{S}4$ without fmp”, Lect. notes in Math., 255 (1972), 98–102 | DOI | MR | Zbl