Commutative rings with subinjective ideals
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 249-256

Voir la notice de l'article provenant de la source Math-Net.Ru

An ideal in a commutative ring is called subinjective if it is the homomorphic image of an injective module. It is proved that all ideals in a commutative ring are subinjective if and only if the ring is a direct sum of local rings with this property. Necessary and sufficient conditions are given for all ideals to be subinjective in the local case. In particular, this is the case for self-injective rings whose ideals are linearly ordered, and for local self-injective rings in which the maximal ideal has a nontrivial annihilator. Bibliography: 7 titles.
@article{SM_1977_31_2_a7,
     author = {L. A. Skornyakov},
     title = {Commutative rings with subinjective ideals},
     journal = {Sbornik. Mathematics},
     pages = {249--256},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a7/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - Commutative rings with subinjective ideals
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 249
EP  - 256
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a7/
LA  - en
ID  - SM_1977_31_2_a7
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T Commutative rings with subinjective ideals
%J Sbornik. Mathematics
%D 1977
%P 249-256
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a7/
%G en
%F SM_1977_31_2_a7
L. A. Skornyakov. Commutative rings with subinjective ideals. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 249-256. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a7/