The connected component of the group of automorphisms of a locally compact group
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 219-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the investigation of the group of automorphisms $\operatorname{Aut}G$ of a locally compact group $G$. $\operatorname{Aut}G$ is equipped with a topology which is naturally related to the topology of $G$. The connected component of $\operatorname{Aut}G$ is determined for a group $G$ which can be written as a semidirect product of a vector group and a group possessing an open compact subgroup. For a central group $G$ an explicit representation of $(\operatorname{Aut}G)_0$ is obtained in the form of a product of certain well-defined subgroups of $\operatorname{Aut}G$. The following result is obtained: Theorem. {\it If $G$ is locally compact group whose connected component is compact, then the connected component of $\operatorname{Aut}G$ is also compact.} Bibliography: 11 titles.
@article{SM_1977_31_2_a5,
     author = {O. V. Mel'nikov},
     title = {The connected component of the group of automorphisms of a~locally compact group},
     journal = {Sbornik. Mathematics},
     pages = {219--229},
     year = {1977},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a5/}
}
TY  - JOUR
AU  - O. V. Mel'nikov
TI  - The connected component of the group of automorphisms of a locally compact group
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 219
EP  - 229
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a5/
LA  - en
ID  - SM_1977_31_2_a5
ER  - 
%0 Journal Article
%A O. V. Mel'nikov
%T The connected component of the group of automorphisms of a locally compact group
%J Sbornik. Mathematics
%D 1977
%P 219-229
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a5/
%G en
%F SM_1977_31_2_a5
O. V. Mel'nikov. The connected component of the group of automorphisms of a locally compact group. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a5/

[1] J. Braconnier, “Groupes d'automorphismes d'une groupe localement compact”, C. r. Acad. scient. Paris, 220 (1945), 382–384 | MR | Zbl

[2] K. Iwasawa, “On some types of topological groups”, Ann. Math., 50:3 (1949), 507–558 | DOI | MR | Zbl

[3] C. Wells, “Automorphisms of group extensions”, Trans. Amer. Math. Soc., 155 (1971), 189–194 | DOI | MR | Zbl

[4] M. Moskowitz, “Homological algebra in locally compact groups”, Trans. Amer. Math. Soc., 127 (1967), 361–404 | DOI | MR | Zbl

[5] R. Arens, “Topologies for homeomorphism groups”, Amer. J. Math., 68 (1946), 693–710 | DOI | MR

[6] Z. I. Borevich, D. K. Faddeev, “Teoriya gomologii v gruppakh, I”, Vestnik LGU, 1956, no. 7, 3–39 | Zbl

[7] V. M. Glushkov, “Stroenie lokalno bikompaktnykh grupp i pyataya problema Gilberta”, Uspekhi matem. nauk, XII:2 (1957), 3–41

[8] E. Hewitt, K. Ross, Abstract harmonic analysis, I, Berlin–Göttingen–Heidelberg, 1973

[9] S. Grosser, M. Moskowitz, “Compactness conditions in topological groups”, J. reine angew. Math., 246 (1971), 1–40 | MR | Zbl

[10] S. Grosser, M. Moskowitz, “On central topological groups”, Trans. Amer. Math. Soc., 127:2 (1967), 317–341 | DOI | MR

[11] S. Maklein, Gomologiya, izd-vo «Mir», Moskva, 1966