An estimate for the subharmonic difference of subharmonic functions.~I
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 191-218

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$, $v$ and $w=u-v$ be subharmonic functions in the half-plane $\Pi:\operatorname{Re}\omega>v$ and suppose that $u(\omega)$ and $v(\omega)$ are majorized by a positive function of the form $M(\omega)=\rho T(\rho,\tau)$, where $\rho=|\omega|$ and $\tau=1-\frac2\pi|\arg\omega|$. An inequality for the subharmonic difference $w=u-v$ is obtained in terms of the function $T(t,\tau)$, $0$, $0\tau1$, which then gives an estimate for the difference from above. This inequality is carried over by conformal mappings to a class of regions with cusps (horn regions). Bibliography: 12 titles.
@article{SM_1977_31_2_a4,
     author = {I. F. Krasichkov-Ternovskii},
     title = {An estimate for the subharmonic difference of subharmonic {functions.~I}},
     journal = {Sbornik. Mathematics},
     pages = {191--218},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1977},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/}
}
TY  - JOUR
AU  - I. F. Krasichkov-Ternovskii
TI  - An estimate for the subharmonic difference of subharmonic functions.~I
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 191
EP  - 218
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/
LA  - en
ID  - SM_1977_31_2_a4
ER  - 
%0 Journal Article
%A I. F. Krasichkov-Ternovskii
%T An estimate for the subharmonic difference of subharmonic functions.~I
%J Sbornik. Mathematics
%D 1977
%P 191-218
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/
%G en
%F SM_1977_31_2_a4
I. F. Krasichkov-Ternovskii. An estimate for the subharmonic difference of subharmonic functions.~I. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 191-218. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/