An estimate for the subharmonic difference of subharmonic functions.~I
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 191-218
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$, $v$ and $w=u-v$ be subharmonic functions in the half-plane
$\Pi:\operatorname{Re}\omega>v$ and suppose that $u(\omega)$ and $v(\omega)$
are majorized by a positive function of the form $M(\omega)=\rho T(\rho,\tau)$, where $\rho=|\omega|$ and $\tau=1-\frac2\pi|\arg\omega|$.
An inequality for the subharmonic difference $w=u-v$ is obtained in terms of the function $T(t,\tau)$, $0$, $0\tau1$, which then gives an estimate for the difference from above. This inequality is carried over by conformal mappings to a class of regions with cusps (horn regions).
Bibliography: 12 titles.
@article{SM_1977_31_2_a4,
author = {I. F. Krasichkov-Ternovskii},
title = {An estimate for the subharmonic difference of subharmonic {functions.~I}},
journal = {Sbornik. Mathematics},
pages = {191--218},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1977},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/}
}
I. F. Krasichkov-Ternovskii. An estimate for the subharmonic difference of subharmonic functions.~I. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 191-218. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a4/