On admissible rules of intuitionistic propositional logic
Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 279-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies modus rules of deduction admissible in intuitionistic propositional logic (a rule is called a modus rule if it corresponds to some sequence and allows passage from the results of any substitution in the formulas in its antecedent to the result of the same substitution in its succedent). Examples of such rules are considered, as well as the derivability of certain rules from others by means of the intuitionistic propositional calculus. An infinite independent system of admissible modus rules is constructed. It is proved that a finite Gödel pseudo-Boolean algebra in which all modus rules are valid (i.e. the quasi-identities corresponding to them are valid) is isomorphic to a sequential union of Boolean algebras of power not greater than 4. Figures: 3. Bibliography: 17 titles.
@article{SM_1977_31_2_a10,
     author = {A. I. Citkin},
     title = {On admissible rules of intuitionistic propositional logic},
     journal = {Sbornik. Mathematics},
     pages = {279--288},
     year = {1977},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a10/}
}
TY  - JOUR
AU  - A. I. Citkin
TI  - On admissible rules of intuitionistic propositional logic
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 279
EP  - 288
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_2_a10/
LA  - en
ID  - SM_1977_31_2_a10
ER  - 
%0 Journal Article
%A A. I. Citkin
%T On admissible rules of intuitionistic propositional logic
%J Sbornik. Mathematics
%D 1977
%P 279-288
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1977_31_2_a10/
%G en
%F SM_1977_31_2_a10
A. I. Citkin. On admissible rules of intuitionistic propositional logic. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a10/

[1] V. Ya. Gerchiu, A. V. Kuznetsov, “O konechno aksiomatiziruemykh superintuitsionistskikh logikakh”, DAN SSSR, 195:6 (1970), 1263–1266 | Zbl

[2] S. K. Klini, Vvedenie v metamatematiku, IL, Moskva, 1957

[3] “Konkursnye problemy k X Vsesoyuznomu algebraicheskomu kollokviumu”, Algebra i logika, 8:1 (1969), 3–4

[4] Kourovskaya tetrad

[5] A. V. Kuznetsov, V. Ya. Gerchiu, “O superintuitsionistskikh logikakh i finitnoi approksimiruemosti”, DAN SSSR, 195:5 (1970), 1029–1032 | Zbl

[6] A. G. Kurosh, Teoriya grupp, izd-vo «Nauka», Moskva, 1967 | MR

[7] A. I. Maltsev, Algebraicheskie sistemy, izd-vo «Nauka», Moskva, 1970 | MR

[8] G. E. Mints, “Dopustimye i proizvodnye pravila”, Zapiski nauchnykh seminarov LOMI AN SSSR, 8 (1968), 189–191 | Zbl

[9] G. E. Mints, “Proizvodnost dopustimykh pravil”, Zapiski nauchnykh seminarov LOMI AN SSSR, 32 (1972), 85–89

[10] E. Raseva, R. Sikorskii, Matematika metamatematiki, izd-vo «Nauka», Moskva, 1972 | MR

[11] V. A. Yankov, “Postroenie posledovatelnosti silno nezavisimykh superintuitsionistskikh propozitsionalnykh ischislenii”, DAN SSSR, 181:1 (1968), 33–34 | Zbl

[12] V. A. Yankov, “Kon'yunktivno nerazlozhimye formuly v propozitsionalnykh ischisleniyakh”, Izv. AN SSSR, seriya matem., 33 (1969), 18–38 | Zbl

[13] S. L. Bloom, “A theorem on well-finite standard consequence operation”, Bull. sec. Logic, 2:3 (1973), 159–165 | MR

[14] R. Harrop, “Concerning formulas of the types $A\to B\vee C$, $A\to \exists\, x$ $B(x)$ in intuitionistic formal systems”, J. Symbolic Logic, 25:1 (1960), 27–32 | DOI | MR | Zbl

[15] J. Los, R. Suszko, “Remarks on sentencial logic”, Indag. Math., 20 (1958), 177–183 | MR

[16] H. Wang, “Note on rules of inference”, Z. Math. Logik Grundl. Math., 11:3 (1965), 193–196 | DOI | MR | Zbl

[17] R. Wojcicki, “Matrix approach in methodology of sentencial calculi”, Studia Logica, 32 (1973), 7–39 | DOI | MR | Zbl