@article{SM_1977_31_2_a1,
author = {M. M. Vishik},
title = {The $\mathfrak p$-adic zeta-fucntion of an imaginary quadratic field and the {Leopoldt} regualtor},
journal = {Sbornik. Mathematics},
pages = {151--158},
year = {1977},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_2_a1/}
}
M. M. Vishik. The $\mathfrak p$-adic zeta-fucntion of an imaginary quadratic field and the Leopoldt regualtor. Sbornik. Mathematics, Tome 31 (1977) no. 2, pp. 151-158. http://geodesic.mathdoc.fr/item/SM_1977_31_2_a1/
[1] A. Brumer, “On the units of algebraic number fields”, Mathematika, 14 (1967), 121–124 | MR | Zbl
[2] K. Iwasawa, “On $\mathbf{Z}_l$-extensions of algebraic number fields”, Ann. Math., 98:2 (1973), 246–326 | DOI | MR | Zbl
[3] H. W. Leopoldt, “Zur Arithmetik in abelschen Zahlkörpern”, J. reine und angew. Math., 209 (1962), 54–71 | MR | Zbl
[4] Yu. I. Manin, “Periody parabolicheskikh form i $p$-adicheskie ryady Gekke”, Matem. sb., 92 (134) (1973), 376–401 | MR
[5] K. Ramachandra, “Some applications of Kronecker's limit formulas”, Ann. Math., 80:1 (1964), 104–148 | DOI | MR | Zbl
[6] G. Robert, “Unités Elliptiques”, Bull. Soc. Math. Françe, Suppl., 1973, no. 36 | MR
[7] C. L. Siegel, Lectures on Advanced Analytic Number Theory, Tata Institut, Bombay, 1961 | MR
[8] M. M. Vishik, “Nearkhimedovy mery, svyazannye s ryadami Dirikhle”, Matem. sb., 99(141) (1976), 248–260 | Zbl
[9] B. Mazur, “$p$-Adic Analytic Number Theory of Elliptic Curves and Abelian Varieties over $\mathbf{Q}$”, Proc. Int. Congr. of Math., Vancouver, 1974, 369–377 | MR