@article{SM_1977_31_1_a5,
author = {V. A. Vatutin},
title = {Asymptotic behavior of the survival probability for a~decomposable branching process with replacements depending on the age of the particles},
journal = {Sbornik. Mathematics},
pages = {95--107},
year = {1977},
volume = {31},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_1_a5/}
}
TY - JOUR AU - V. A. Vatutin TI - Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles JO - Sbornik. Mathematics PY - 1977 SP - 95 EP - 107 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1977_31_1_a5/ LA - en ID - SM_1977_31_1_a5 ER -
%0 Journal Article %A V. A. Vatutin %T Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles %J Sbornik. Mathematics %D 1977 %P 95-107 %V 31 %N 1 %U http://geodesic.mathdoc.fr/item/SM_1977_31_1_a5/ %G en %F SM_1977_31_1_a5
V. A. Vatutin. Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles. Sbornik. Mathematics, Tome 31 (1977) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/SM_1977_31_1_a5/
[1] B. A. Sevastyanov, Vetvyaschiesya protsessy, izd-vo «Nauka», Moskva, 1971 | MR
[2] V. A. Vatutin, “Asimptotika veroyatnosti prodolzheniya kriticheskogo vetvyaschegosya protsessa”, Teoriya veroyatn., XXII:1 (1977), 143–149 | MR | Zbl
[3] F. R. Gantmakher, Teoriya matrits, izd-vo «Nauka», Moskva, 1966 | MR
[4] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, izd-vo «Mir», Moskva, 1967
[5] V. P. Chistyakov, “Asimptotika veroyatnosti prodolzheniya kriticheskogo vetvyaschegosya protsessa”, Teoriya veroyatn., XVI (1971), 638–648
[6] S. Karlin, Osnovy teorii sluchainykh protsessov, izd-vo «Mir», Moskva, 1971 | MR
[7] Y. Ogura, “Asymptotic behaviour of multitype Galton-Watson processes”, J. Math. Kyoto Univ., 15:2 (1975), 251–302 | MR | Zbl
[8] M. J. Goldstein, “Critical age-dependent branching processes: sirgle and multitype”, Z. Wahrsheinlichkeitstheorie, 17:1 (1971), 74–88 | DOI | MR | Zbl
[9] J. Chover, P. Ney, “The non-linear renewal equation”, J. D'Analyse Math., 21 (1968), 381–413 | DOI | MR | Zbl