Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane
Sbornik. Mathematics, Tome 31 (1977) no. 1, pp. 1-27
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that all polygons in the Lobachevskii plane which have a finite number of vertices, as well as two wide classes of polygons with denumerably many vertices, can be regularly isometrically embedded in $E^3$. It is also shown that these polygons can be covered by a regular Chebyshev net. Bibliography: 4 titles.
@article{SM_1977_31_1_a0,
author = {\`E. G. Poznyak},
title = {Isometrics embedding in~$E^3$ of some noncompact domains in the {Lobachevskii} plane},
journal = {Sbornik. Mathematics},
pages = {1--27},
year = {1977},
volume = {31},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/}
}
È. G. Poznyak. Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane. Sbornik. Mathematics, Tome 31 (1977) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/
[1] B. L. Rozhdestvenskii, “Sistema kvazilineinykh uravnenii teorii poverkhnostei”, DAN SSSR, 143:1 (1962), 50–52 | Zbl
[2] E. G. Poznyak, “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, DAN SSSR, 170:4 (1966), 786–789 | Zbl
[3] E. G. Poznyak, “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, Ukr. geom. sb., 1966, no. 3, 78–92 | Zbl
[4] V. F. Kagan, Osnovy teorii poverkhnostei, OGIZ, Moskva, 1948 | MR | Zbl