Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane
Sbornik. Mathematics, Tome 31 (1977) no. 1, pp. 1-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that all polygons in the Lobachevskii plane which have a finite number of vertices, as well as two wide classes of polygons with denumerably many vertices, can be regularly isometrically embedded in $E^3$. It is also shown that these polygons can be covered by a regular Chebyshev net. Bibliography: 4 titles.
@article{SM_1977_31_1_a0,
     author = {\`E. G. Poznyak},
     title = {Isometrics embedding in~$E^3$ of some noncompact domains in the {Lobachevskii} plane},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     year = {1977},
     volume = {31},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/}
}
TY  - JOUR
AU  - È. G. Poznyak
TI  - Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane
JO  - Sbornik. Mathematics
PY  - 1977
SP  - 1
EP  - 27
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/
LA  - en
ID  - SM_1977_31_1_a0
ER  - 
%0 Journal Article
%A È. G. Poznyak
%T Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane
%J Sbornik. Mathematics
%D 1977
%P 1-27
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/
%G en
%F SM_1977_31_1_a0
È. G. Poznyak. Isometrics embedding in $E^3$ of some noncompact domains in the Lobachevskii plane. Sbornik. Mathematics, Tome 31 (1977) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1977_31_1_a0/

[1] B. L. Rozhdestvenskii, “Sistema kvazilineinykh uravnenii teorii poverkhnostei”, DAN SSSR, 143:1 (1962), 50–52 | Zbl

[2] E. G. Poznyak, “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, DAN SSSR, 170:4 (1966), 786–789 | Zbl

[3] E. G. Poznyak, “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, Ukr. geom. sb., 1966, no. 3, 78–92 | Zbl

[4] V. F. Kagan, Osnovy teorii poverkhnostei, OGIZ, Moskva, 1948 | MR | Zbl