A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem
Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 539-563

Voir la notice de l'article provenant de la source Math-Net.Ru

On a compact manifold $\Omega$ we examine the equation \begin{equation} A_2u=h. \end{equation} We assume that $A_2$ is a second-order elliptic selfadjoint positive definite differential operator and that the coefficients of the operator and of the function $h$ are analytic on $\Omega$. It is well known that equation (1) has a unique global solution $u(\omega)$ defined on the whole $\Omega$ (as a consequence of the Cauchy–Kowalewski theorem there are many local solutions). In this paper we obtain an explicit expression for the value of $u(\omega)$ at a point $\omega_0$ in terms of the Taylor coefficients of the right-hand side at $\omega_0$, and of the coefficients of the operator. By the same token we obtain an expression for the solution of the global problem in terms of the local data of this problem. Bibliography: 7 titles.
@article{SM_1976_30_4_a6,
     author = {A. V. Babin},
     title = {A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem},
     journal = {Sbornik. Mathematics},
     pages = {539--563},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_4_a6/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 539
EP  - 563
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_4_a6/
LA  - en
ID  - SM_1976_30_4_a6
ER  - 
%0 Journal Article
%A A. V. Babin
%T A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem
%J Sbornik. Mathematics
%D 1976
%P 539-563
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_4_a6/
%G en
%F SM_1976_30_4_a6
A. V. Babin. A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem. Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 539-563. http://geodesic.mathdoc.fr/item/SM_1976_30_4_a6/