Galois extensions of radical algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 441-447
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose $G$ is a finite group of automorphisms of an associative algebra $K$ with an identity element over a field $F$. Let $t(x)=\sum_{g\in G}x^g$. Assume that $\rho$ is a supernilpotent radical which is closed under the taking of subalgebras and satisfies the following condition: if $A\in\rho$ and $M$ is a nonempty set, then the ring $A_M$ of $M\times M$ matrices all but a finite number of whose columns are zero is radical.
THEOREM. If $R$ is a two-sided ideal of $K$ and $K=t(K)K,$ then $t(R)\in\rho$ implies $R\in\rho$.
Examples of radicals satisfying the above conditions are Baer's lower radical, the locally nilpotent radical, the locally finite radical, and also the algebraic kernel and Köthe radical, if $F$ is uncountable.
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1976_30_4_a1,
     author = {V. K. Kharchenko},
     title = {Galois extensions of radical algebras},
     journal = {Sbornik. Mathematics},
     pages = {441--447},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_4_a1/}
}
                      
                      
                    V. K. Kharchenko. Galois extensions of radical algebras. Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 441-447. http://geodesic.mathdoc.fr/item/SM_1976_30_4_a1/
