Stabilization of the solutions of the second boundary value problem for a~second order parabolic equation
Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 403-440
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is a continuation of work (RZhMat., 1973, 10B301) in which in the
case of a “noncontracting” unbounded domain $\Omega$ there is distinguished
a geometric characteristic $v(R)=\operatorname{mes}(\Omega\cap\{|x|$ of the domain $\Omega$ that determines (under the fulfillment of a certain condition of “regularity” of the domain) the rate of stabilization for $t\to\infty$ of the solution in $(t>0)\times\Omega$ of the following second boundary value problem for a parabolic equation:
$$
u_t=\sum_{i,j=1}^n\bigl(a_{i,j}(t,x)u_{x_i}\bigr)_{x_j},\qquad\frac{\partial u}{\partial N}\Bigr|_{x\in\partial\Omega}=0,\quad u|_{t=0}=\varphi(x)
$$
in which the initial function $\varphi(x)$ decreases sufficiently rapidly as $|x|\to\infty$. It is proved in the present paper that the same characteristic also determines the rate of stabilization of the solution in a class of “contracting” ($\lim_{R\to\infty}v(R)/R=0$) domains $\Omega$. In this case, as in the case of a “noncontracting” domain, $\|u(t,x)\|_{L_\infty(\Omega)}$ tends to zero as $t\to\infty$ like $1/v(\sqrt{t})$: there exist estimates of the function
$\|u(t,x)\|_{L_\infty(\Omega)}$ from above and from below having such an order
of decrease.
Bibliography: 11 titles.
@article{SM_1976_30_4_a0,
author = {A. K. Gushchin},
title = {Stabilization of the solutions of the second boundary value problem for a~second order parabolic equation},
journal = {Sbornik. Mathematics},
pages = {403--440},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_4_a0/}
}
TY - JOUR AU - A. K. Gushchin TI - Stabilization of the solutions of the second boundary value problem for a~second order parabolic equation JO - Sbornik. Mathematics PY - 1976 SP - 403 EP - 440 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_30_4_a0/ LA - en ID - SM_1976_30_4_a0 ER -
A. K. Gushchin. Stabilization of the solutions of the second boundary value problem for a~second order parabolic equation. Sbornik. Mathematics, Tome 30 (1976) no. 4, pp. 403-440. http://geodesic.mathdoc.fr/item/SM_1976_30_4_a0/