Nonbendability of closed surfaces of genus $p\geqslant1$ and positive extrinsic curvature
Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 361-372
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains a proof of the unbendability of a closed surface of genus $p>1$ and positive extrinsic curvature in a $3$-dimensional Riemannian space, and the unbendability of a closed surface of genus $p=1$ and positive extrinsic curvature in a Riemannian space when one point of the surface is fixed.
Bibliography: 8 titles.
@article{SM_1976_30_3_a5,
author = {V. T. Fomenko and S. B. Klimentov},
title = {Nonbendability of closed surfaces of genus $p\geqslant1$ and positive extrinsic curvature},
journal = {Sbornik. Mathematics},
pages = {361--372},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_3_a5/}
}
TY - JOUR AU - V. T. Fomenko AU - S. B. Klimentov TI - Nonbendability of closed surfaces of genus $p\geqslant1$ and positive extrinsic curvature JO - Sbornik. Mathematics PY - 1976 SP - 361 EP - 372 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_30_3_a5/ LA - en ID - SM_1976_30_3_a5 ER -
V. T. Fomenko; S. B. Klimentov. Nonbendability of closed surfaces of genus $p\geqslant1$ and positive extrinsic curvature. Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 361-372. http://geodesic.mathdoc.fr/item/SM_1976_30_3_a5/