On the imaginary component of a dissipative operator with slowly increasing resolvent
Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the class $\Lambda$ (RZhMat., 1970, 6B675) of bounded dissipative operators with real spectrum acting in the infinite-dimensional separable Hilbert space $\mathfrak H$ whose resolvents $R_A(\lambda)$ satisfy the following growth condition: $$ \varlimsup_{y\to+0}\int_{-\infty}^\infty(1+x^2)^{-1}\ln^+y\,\|R_A(x+iy)\|\,dx<\infty. $$ Principal results: 1. The operator $H\geqslant0$ is the imaginary component of an operator $A\in\Lambda$ (i.e., $H=(1/2i)(A-A^*)$) if and only if $0$ is either an eigenvalue of infinite multiplicity for $H$ or a limit point for the spectrum of $H$. 2. All linear operators with imaginary component $H\geqslant0$ and real spectrum belong to the class $\Lambda$ if and only if $H$ is nuclear: $\operatorname{tr}H<\infty$. Bibliography: 10 titles.
@article{SM_1976_30_3_a2,
     author = {Yu. P. Ginzburg},
     title = {On the imaginary component of a~dissipative operator with slowly increasing resolvent},
     journal = {Sbornik. Mathematics},
     pages = {311--320},
     year = {1976},
     volume = {30},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/}
}
TY  - JOUR
AU  - Yu. P. Ginzburg
TI  - On the imaginary component of a dissipative operator with slowly increasing resolvent
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 311
EP  - 320
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/
LA  - en
ID  - SM_1976_30_3_a2
ER  - 
%0 Journal Article
%A Yu. P. Ginzburg
%T On the imaginary component of a dissipative operator with slowly increasing resolvent
%J Sbornik. Mathematics
%D 1976
%P 311-320
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/
%G en
%F SM_1976_30_3_a2
Yu. P. Ginzburg. On the imaginary component of a dissipative operator with slowly increasing resolvent. Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/

[1] Yu. P. Ginzburg, R. L. Mogilevskaya, “Ob odnom klasse dissipativnykh operatorov s medlenno rastuschei rezolventoi”, Funkts. analiz, 3:4 (1969), 83–84 | MR | Zbl

[2] L. E. Isaev, “Ob odnom klasse operatorov so spektrom, sosredotochennym v nule”, DAN SSSR, 178:4 (1968), 783–785 | MR | Zbl

[3] Yu. P. Ginzburg, R. L. Mogilevskaya, “O spektralnykh funktsiyakh szhatii s medlenno rastuschei rezolventoi”, DAN SSSR, 207:3 (1972), 517–520 | MR | Zbl

[4] M. S. Brodskii, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, izd-vo «Nauka», Moskva, 1969 | MR

[5] M. S. Brodskii, “O treugolnom predstavlenii nekotorykh operatorov s vpolne nepreryvnoi mnimoi chastyu”, DAN SSSR, 133:6 (1960), 1271–1274 | MR | Zbl

[6] M. S. Brodskii, I. Ts. Gokhberg, M. G. Krein, “Obschie teoremy o treugolnykh predstavleniyakh lineinykh operatorov i multiplikativnykh predstavleniyakh ikh kharakteristicheskikh funktsii”, Funkts. analiz, 3:4 (1969), 1–27 | MR | Zbl

[7] Yu. P. Ginzburg, “O multiplikativnykh predstavleniyakh $J$-nerastyagivayuschikh operator-funktsii, II”, Matem. issledovaniya, 2, no. 3, Kishinev, 1967, 20–51 | MR | Zbl

[8] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. 2, izd-vo «Nauka», Moskva, 1968

[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, izd-vo «Nauka», Moskva, 1965

[10] P. Khalmosh, Gilbertovo prostranstvo v zadachakh, izd-vo «Mir», Moskva, 1970 | MR