On the imaginary component of a~dissipative operator with slowly increasing resolvent
Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class $\Lambda$ (RZhMat., 1970, 6B675) of bounded dissipative operators with real spectrum acting in the infinite-dimensional separable Hilbert space $\mathfrak H$ whose resolvents $R_A(\lambda)$ satisfy the following growth condition:
$$
\varlimsup_{y\to+0}\int_{-\infty}^\infty(1+x^2)^{-1}\ln^+y\,\|R_A(x+iy)\|\,dx\infty.
$$
Principal results:
1. The operator $H\geqslant0$ is the imaginary component of an operator $A\in\Lambda$ (i.e., $H=(1/2i)(A-A^*)$) if and only if $0$ is either an eigenvalue of infinite multiplicity for $H$ or a limit point for the spectrum of $H$.
2. All linear operators with imaginary component $H\geqslant0$ and real spectrum belong to the class $\Lambda$ if and only if $H$ is nuclear: $\operatorname{tr}H\infty$.
Bibliography: 10 titles.
@article{SM_1976_30_3_a2,
author = {Yu. P. Ginzburg},
title = {On the imaginary component of a~dissipative operator with slowly increasing resolvent},
journal = {Sbornik. Mathematics},
pages = {311--320},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/}
}
Yu. P. Ginzburg. On the imaginary component of a~dissipative operator with slowly increasing resolvent. Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/