On the imaginary component of a~dissipative operator with slowly increasing resolvent
Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $\Lambda$ (RZhMat., 1970, 6B675) of bounded dissipative operators with real spectrum acting in the infinite-dimensional separable Hilbert space $\mathfrak H$ whose resolvents $R_A(\lambda)$ satisfy the following growth condition: $$ \varlimsup_{y\to+0}\int_{-\infty}^\infty(1+x^2)^{-1}\ln^+y\,\|R_A(x+iy)\|\,dx\infty. $$ Principal results: 1. The operator $H\geqslant0$ is the imaginary component of an operator $A\in\Lambda$ (i.e., $H=(1/2i)(A-A^*)$) if and only if $0$ is either an eigenvalue of infinite multiplicity for $H$ or a limit point for the spectrum of $H$. 2. All linear operators with imaginary component $H\geqslant0$ and real spectrum belong to the class $\Lambda$ if and only if $H$ is nuclear: $\operatorname{tr}H\infty$. Bibliography: 10 titles.
@article{SM_1976_30_3_a2,
     author = {Yu. P. Ginzburg},
     title = {On the imaginary component of a~dissipative operator with slowly increasing resolvent},
     journal = {Sbornik. Mathematics},
     pages = {311--320},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/}
}
TY  - JOUR
AU  - Yu. P. Ginzburg
TI  - On the imaginary component of a~dissipative operator with slowly increasing resolvent
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 311
EP  - 320
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/
LA  - en
ID  - SM_1976_30_3_a2
ER  - 
%0 Journal Article
%A Yu. P. Ginzburg
%T On the imaginary component of a~dissipative operator with slowly increasing resolvent
%J Sbornik. Mathematics
%D 1976
%P 311-320
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/
%G en
%F SM_1976_30_3_a2
Yu. P. Ginzburg. On the imaginary component of a~dissipative operator with slowly increasing resolvent. Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/SM_1976_30_3_a2/