Ideals in commutative rings
Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 297-310

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with one-dimensional (commutative) rings without nilpotent elements such that every ideal is generated by three elements. It is shown that in such rings the square of every ideal is invertible, i.e. divides its multiplier ring. In addition, every ideal is distinguished, in the sense that on localization at any maximal ideal it becomes either principal or dual to a principal ideal. Conversely, if a one-dimensional ring without nilpotent elements satisfies either of these conditions, and if all its residue class fields are $2$-perfect and contain at least three elements, then every ideal can be generated by three elements. Bibliography: 16 titles.
@article{SM_1976_30_3_a1,
     author = {Yu. A. Drozd},
     title = {Ideals in commutative rings},
     journal = {Sbornik. Mathematics},
     pages = {297--310},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_3_a1/}
}
TY  - JOUR
AU  - Yu. A. Drozd
TI  - Ideals in commutative rings
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 297
EP  - 310
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_3_a1/
LA  - en
ID  - SM_1976_30_3_a1
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%T Ideals in commutative rings
%J Sbornik. Mathematics
%D 1976
%P 297-310
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_3_a1/
%G en
%F SM_1976_30_3_a1
Yu. A. Drozd. Ideals in commutative rings. Sbornik. Mathematics, Tome 30 (1976) no. 3, pp. 297-310. http://geodesic.mathdoc.fr/item/SM_1976_30_3_a1/