@article{SM_1976_30_2_a3,
author = {V. B. Alekseev and V. S. Gonchakov},
title = {The thickness of an arbitrary complete graph},
journal = {Sbornik. Mathematics},
pages = {187--202},
year = {1976},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/}
}
V. B. Alekseev; V. S. Gonchakov. The thickness of an arbitrary complete graph. Sbornik. Mathematics, Tome 30 (1976) no. 2, pp. 187-202. http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/
[1] J. Battle, F. Harary, Y. Kodama, “Every planar graph with nine points has a nonplanar complement”, Bull. Amer. Math. Soc., 68 (1962), 569–571 | DOI | MR | Zbl
[2] W. T. Tutte, “The nonbiplanar character of the complete 9 graph”, Canad. Math. Bull., 6 (1963), 319–330 | MR
[3] L. W. Beineke, F. Harary, “On the thickness of the complete graph”, Bull. Amer. Math. Soc., 70 (1964), 618–620 | DOI | MR | Zbl
[4] L. W. Beineke, F. Harary, “The thickness of the complete graph”, Canad. J. Math., 17:6 (1965), 850–859 ; Teoriya grafov Pokrytiya, ukladki, turniry, Mir, M., 1974 | MR | Zbl
[5] L. W. Beineke, “The decomposition of complete graphs into planar subgraphs”, Graph Theory and Theoretical Physics, Academic Press, London, 1967, 139–154 | MR
[6] A. M. Hobbs, J. W. Grossman, “Thickness and connectivity in graphs”, J. Res. Nat. Bur. Standards Sect. B, 72B:3 (1968), 239–244 | MR
[7] J. Mayer, “L'epaisseur des graphes completes $K_{34}$ et $K_{40}$”, J. Comb. Theory, 9:2 (1972), 162–172 | MR
[8] J. Mayer, “L'epaisseur du graphe complete de $46$ sommets”, Discrete Math., 1:2 (1971), 209–210 | DOI | MR | Zbl
[9] J. Mayer, “Decomposition de $K_{16}$ en trois graphes”, J. Comb. Theory, 13:1 (1972), 71 | DOI | MR | Zbl