The thickness of an arbitrary complete graph
Sbornik. Mathematics, Tome 30 (1976) no. 2, pp. 187-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{SM_1976_30_2_a3,
     author = {V. B. Alekseev and V. S. Gonchakov},
     title = {The thickness of an arbitrary complete graph},
     journal = {Sbornik. Mathematics},
     pages = {187--202},
     year = {1976},
     volume = {30},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/}
}
TY  - JOUR
AU  - V. B. Alekseev
AU  - V. S. Gonchakov
TI  - The thickness of an arbitrary complete graph
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 187
EP  - 202
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/
LA  - en
ID  - SM_1976_30_2_a3
ER  - 
%0 Journal Article
%A V. B. Alekseev
%A V. S. Gonchakov
%T The thickness of an arbitrary complete graph
%J Sbornik. Mathematics
%D 1976
%P 187-202
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/
%G en
%F SM_1976_30_2_a3
V. B. Alekseev; V. S. Gonchakov. The thickness of an arbitrary complete graph. Sbornik. Mathematics, Tome 30 (1976) no. 2, pp. 187-202. http://geodesic.mathdoc.fr/item/SM_1976_30_2_a3/

[1] J. Battle, F. Harary, Y. Kodama, “Every planar graph with nine points has a nonplanar complement”, Bull. Amer. Math. Soc., 68 (1962), 569–571 | DOI | MR | Zbl

[2] W. T. Tutte, “The nonbiplanar character of the complete 9 graph”, Canad. Math. Bull., 6 (1963), 319–330 | MR

[3] L. W. Beineke, F. Harary, “On the thickness of the complete graph”, Bull. Amer. Math. Soc., 70 (1964), 618–620 | DOI | MR | Zbl

[4] L. W. Beineke, F. Harary, “The thickness of the complete graph”, Canad. J. Math., 17:6 (1965), 850–859 ; Teoriya grafov Pokrytiya, ukladki, turniry, Mir, M., 1974 | MR | Zbl

[5] L. W. Beineke, “The decomposition of complete graphs into planar subgraphs”, Graph Theory and Theoretical Physics, Academic Press, London, 1967, 139–154 | MR

[6] A. M. Hobbs, J. W. Grossman, “Thickness and connectivity in graphs”, J. Res. Nat. Bur. Standards Sect. B, 72B:3 (1968), 239–244 | MR

[7] J. Mayer, “L'epaisseur des graphes completes $K_{34}$ et $K_{40}$”, J. Comb. Theory, 9:2 (1972), 162–172 | MR

[8] J. Mayer, “L'epaisseur du graphe complete de $46$ sommets”, Discrete Math., 1:2 (1971), 209–210 | DOI | MR | Zbl

[9] J. Mayer, “Decomposition de $K_{16}$ en trois graphes”, J. Comb. Theory, 13:1 (1972), 71 | DOI | MR | Zbl