Holomorphic differential forms of higher degree on Kuga's modular varieties
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 119-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper a canonical isomorphism between the space of cusp forms $S_{w+2}(\Gamma)$ of weight $w+2>0$ with respect to the modular group $\Gamma$ and the space of holomorphic differential forms of higher degree on Kuga's modular variety $B_\Gamma^w$ is constructed. Bibliography: 6 titles.
@article{SM_1976_30_1_a6,
     author = {V. V. Shokurov},
     title = {Holomorphic differential forms of higher degree on {Kuga's} modular varieties},
     journal = {Sbornik. Mathematics},
     pages = {119--142},
     year = {1976},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a6/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Holomorphic differential forms of higher degree on Kuga's modular varieties
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 119
EP  - 142
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a6/
LA  - en
ID  - SM_1976_30_1_a6
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Holomorphic differential forms of higher degree on Kuga's modular varieties
%J Sbornik. Mathematics
%D 1976
%P 119-142
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a6/
%G en
%F SM_1976_30_1_a6
V. V. Shokurov. Holomorphic differential forms of higher degree on Kuga's modular varieties. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 119-142. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a6/

[1] M. Artin, “Nekotorye chislennye kriterii styagivaemosti krivykh na algebraicheskikh poverkhnostyakh”, Matematika, 9:3 (1965), 3–14 | MR

[2] H. Laufer, “On rational singularities”, Amer. J. Math., 94:2 (1972), 597–608 | DOI | MR | Zbl

[3] K. Kodaira, “On compact analytic surfaces, II”, Ann. Math., 77 (1963), 563–626 | DOI | MR | Zbl

[4] G. Shimura, Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, izd-vo «Mir», Moskva, 1973 | MR

[5] T. Shioda, “On elliptic modular surfaces”, J. Math. Soc. Japan, 24:1 (1972), 20–59 | MR | Zbl

[6] V. V. Shokurov, “Periody parabolicheskikh form i mnogoobraziya Kugi”, Uspekhi matem. nauk, XXX:3 (183) (1975), 183–184