Simple modular Lie algebras with a~solvable maximal subalgebra
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 68-76

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a proof of the following Theorem. {\it Let $\mathfrak L$ be a simple Lie algebra which is finite dimensional over an algebraically closed field $K,$ where $\operatorname{char}K=p>3,$ and which contains a solvable maximal subalgebra $\mathfrak L_0$ acting irreducibly on the space $\mathfrak L/\mathfrak L_0$. Then $\mathfrak L$ is either the classical algebra $A_1$ or the Zassenhaus algebra $W_1(n)$.} Bibliography: 10 titles.
@article{SM_1976_30_1_a4,
     author = {M. I. Kuznetsov},
     title = {Simple modular {Lie} algebras with a~solvable maximal subalgebra},
     journal = {Sbornik. Mathematics},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
TI  - Simple modular Lie algebras with a~solvable maximal subalgebra
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 68
EP  - 76
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/
LA  - en
ID  - SM_1976_30_1_a4
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%T Simple modular Lie algebras with a~solvable maximal subalgebra
%J Sbornik. Mathematics
%D 1976
%P 68-76
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/
%G en
%F SM_1976_30_1_a4
M. I. Kuznetsov. Simple modular Lie algebras with a~solvable maximal subalgebra. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/