Simple modular Lie algebras with a~solvable maximal subalgebra
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 68-76
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains a proof of the following
Theorem. {\it Let $\mathfrak L$ be a simple Lie algebra which is finite dimensional over an algebraically closed field $K,$ where $\operatorname{char}K=p>3,$ and which contains a solvable maximal subalgebra $\mathfrak L_0$ acting irreducibly on the space $\mathfrak L/\mathfrak L_0$. Then $\mathfrak L$ is either the classical algebra $A_1$ or the Zassenhaus algebra $W_1(n)$.}
Bibliography: 10 titles.
@article{SM_1976_30_1_a4,
author = {M. I. Kuznetsov},
title = {Simple modular {Lie} algebras with a~solvable maximal subalgebra},
journal = {Sbornik. Mathematics},
pages = {68--76},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/}
}
M. I. Kuznetsov. Simple modular Lie algebras with a~solvable maximal subalgebra. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 68-76. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a4/