Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 51-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathscr D$ and $\mathcal G$ be arbitrary Stein manifolds, $E\subset\mathscr D$ and $F\subset\mathscr G$ compact sets, and $X=(E\times\mathscr G)\cup(\mathscr D\times F)$. Under certain general hypotheses it is proved that a function $f$ on $X$ which is separately analytic, i.e. for which $f(z,w)$ is analytic in $z$ in $\mathscr D$ for any fixed $w\in F$ and analytic in $w$ in $\mathscr G$ for any fixed $z\in E$, extends to an analytic function in some open neighborhood $\widetilde X$ of $X$ which is the envelope of holomorphy of $X$. The envelope of holomorphy of $X$ is studied in those cases in which $X$ has no open envelope of holomorphy. Bibliography: 26 titles.
@article{SM_1976_30_1_a3,
     author = {V. P. Zaharyuta},
     title = {Separately analytic functions, generalizations of {Hartogs'} theorem, and envelopes of holomorphy},
     journal = {Sbornik. Mathematics},
     pages = {51--67},
     year = {1976},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/}
}
TY  - JOUR
AU  - V. P. Zaharyuta
TI  - Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 51
EP  - 67
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/
LA  - en
ID  - SM_1976_30_1_a3
ER  - 
%0 Journal Article
%A V. P. Zaharyuta
%T Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
%J Sbornik. Mathematics
%D 1976
%P 51-67
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/
%G en
%F SM_1976_30_1_a3
V. P. Zaharyuta. Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 51-67. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/

[1] F. Hartogs, “Zur Theorie der analytischen Funktionen mehrerer Veränderlichen”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[2] L. Khërmander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1968 | MR

[3] W. F. Osgood, “Note über analytische Funktionen mehrerer Veränderlichen”, Math. Ann., 52 (1899), 462–464 | DOI | MR | Zbl

[4] W. F. Osgood, “Zweite Note über analytische Funktionen mehrerer Veränderlichen”, Math. Ann., 53 (1900), 461–464 | DOI | MR

[5] M. Hukuhara, L'extensions du theoreme d'Osgood et de Hartogs, Kansu-hoteisiki ogobi Oyo-Kaiseki, 48, 1930

[6] I. Shimoda, “Notes on the functions of two complex variables”, J. Gakugei Tokushima Univ., 9 (1957), 1–3 | MR

[7] T. Terada, “Sur une certaine condition sous laquelle une function de plusiers variables est holomorphe”, Publ. Research Inst. for Math. Sci, Ser. A (Kyoto), 2 (1967), 383–396 | DOI | MR

[8] T. Terada, “Analyticites relatives a chaque variable. Analogies du theoreme de Hartogs”, J. Math. Kyoto Univ., 12:2 (1972), 263–296 | MR | Zbl

[9] S. Bernstein, Sur l'ordre de la meileure approximation des fonctions continues par des polynomes de degre donne, Bruxelles, 1912

[10] J. Siciak, “Analyticity and separate analyticity of functions defined on lower dimensional subsets of $\mathbf C^n$”, Zeszyty Nauk. UJ, 13 (1969), 53–70 | MR | Zbl

[11] J. Siciak, “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbf C^n$”, Ann. Polon. Math., 22 (1969), 145–171 | MR | Zbl

[12] N. I. Akhiezer, L. I. Ronkin, “O separatno-analiticheskikh funktsiyakh mnogikh peremennykh i teoremakh ob «ostrie klina»”, Uspekhi matem. nauk, XXVIII:3(171) (1973), 27–42 | MR | Zbl

[13] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, izd-vo «Nauka», Moskva, 1964 | MR

[14] V. P. Zakharyuta, “Prostranstva analiticheskikh i garmonicheskikh funktsii mnogikh peremennykh”, Tezisy dokladov na Vsesoyuznoi konf. po teorii funktsii, Kharkov, 1972, 74–78

[15] V. P. Zakharyuta, “Ekstremalnye plyurisubgarmonicheskie funktsii, gilbertovy shkaly i izomorfizm prostranstv analiticheskikh funktsii mnogikh peremennykh. I; II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 19, Kharkov, 1974, 133–157 | Zbl

[16] B. S. Mityagin, “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, Uspekhi matem. nauk, XVI:4 (100) (1961), 63–132

[17] V. P. Zakharyuta, “O bazisakh i izomorfizme prostranstv funktsii, analiticheskikh v vypuklykh oblastyakh mnogikh peremennykh”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 5, Kharkov, 1967, 5–12 | Zbl

[18] V. P. Zakharyuta, “O prodolzhaemykh bazisakh v prostranstvakh analiticheskikh funktsii odnogo i mnogikh peremennykh”, Sib. matem. zh., 8 (1967), 277–292 | Zbl

[19] B. S. Mityagin, G. M. Khenkin, “Lineinoe razdelenie osobennostei i problema izomorfizma prostranstv golomorfnykh funktsii”, Uspekhi matem. nauk, XXVI:4(160) (1971), 93–152

[20] P. Lelong, “Ensembles singuliers impropres des fonctions plurisousharmoniques”, J. Math. Pures Appl., ser. 9, 36:7 (1957), 263–303 | MR | Zbl

[21] P. Lelong, “Functions entieres de type exponentiel dans $\mathbf{C}^n$”, Ann. Inst. Fourier, 16:2 (1966), 269–318 | MR | Zbl

[22] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, izd-vo «Nauka», Moskva, 1971 | MR

[23] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, izd-vo «Mir», Moskva, 1969 | MR

[24] R. Raimi, “Compact transformations and the $k$-topology in Hilbert Space”, Proc. Amer. Math. Soc., 6:4 (1955), 643–646 | DOI | MR | Zbl

[25] A. Ya. Khelemskii, G. M. Khenkin, “O pogruzhenii kompaktov v ellipsoidy”, Vestnik MGU, seriya 1, 1963, no. 2, 3–12

[26] F. Docquier, H. Grauert, “Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten”, Math. Ann., 140 (1960), 94–123 | DOI | MR | Zbl