Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 51-67

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr D$ and $\mathcal G$ be arbitrary Stein manifolds, $E\subset\mathscr D$ and $F\subset\mathscr G$ compact sets, and $X=(E\times\mathscr G)\cup(\mathscr D\times F)$. Under certain general hypotheses it is proved that a function $f$ on $X$ which is separately analytic, i.e. for which $f(z,w)$ is analytic in $z$ in $\mathscr D$ for any fixed $w\in F$ and analytic in $w$ in $\mathscr G$ for any fixed $z\in E$, extends to an analytic function in some open neighborhood $\widetilde X$ of $X$ which is the envelope of holomorphy of $X$. The envelope of holomorphy of $X$ is studied in those cases in which $X$ has no open envelope of holomorphy. Bibliography: 26 titles.
@article{SM_1976_30_1_a3,
     author = {V. P. Zaharyuta},
     title = {Separately analytic functions, generalizations of {Hartogs'} theorem, and envelopes of holomorphy},
     journal = {Sbornik. Mathematics},
     pages = {51--67},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/}
}
TY  - JOUR
AU  - V. P. Zaharyuta
TI  - Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 51
EP  - 67
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/
LA  - en
ID  - SM_1976_30_1_a3
ER  - 
%0 Journal Article
%A V. P. Zaharyuta
%T Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy
%J Sbornik. Mathematics
%D 1976
%P 51-67
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/
%G en
%F SM_1976_30_1_a3
V. P. Zaharyuta. Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 51-67. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a3/