Iterated Kleene computability and the superjump
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 17-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recursive hierarchies obtained by iterating the well-known version, developed by S. C. Kleene, of recursiveness relative to objects of type $\leqslant2$ are studied in the article. Iteration is carried out over ordinal indexings which, in a definite sense, are effectively constructed. An estimate is given for classes corresponding to critical points of the hierarchies under consideration. Bibliography: 10 titles.
@article{SM_1976_30_1_a1,
     author = {N. V. Beljakin},
     title = {Iterated {Kleene} computability and the superjump},
     journal = {Sbornik. Mathematics},
     pages = {17--37},
     year = {1976},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/}
}
TY  - JOUR
AU  - N. V. Beljakin
TI  - Iterated Kleene computability and the superjump
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 17
EP  - 37
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/
LA  - en
ID  - SM_1976_30_1_a1
ER  - 
%0 Journal Article
%A N. V. Beljakin
%T Iterated Kleene computability and the superjump
%J Sbornik. Mathematics
%D 1976
%P 17-37
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/
%G en
%F SM_1976_30_1_a1
N. V. Beljakin. Iterated Kleene computability and the superjump. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 17-37. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/

[1] N. V. Belyakin, “Obobschennye vychisleniya i arifmetika vtoroi stupeni”, Algebra i logika, 9:4 (1970), 375–405 | Zbl

[2] N. V. Belyakin, “Obobschennye vychisleniya”, Trudy matem. instituta im. V. A. Steklova, CXXXIII (1973), 59–64

[3] N. V. Belyakin, “Ob odnom klasse rekursivnykh ierarkhii”, Algebra i logika, 12:1 (1973), 3–21 | MR | Zbl

[4] N. V. Belyakin, “Obobschennye vychisleniya nad regulyarnymi numeratsiyami”, Algebra i logika, 12:6 (1973), 623–643 | MR | Zbl

[5] S. C. Kleene, “Recursive functionals and quantifiers of finite types”, Trans. Amer. Math. Soc., 91 (1959), 1–52 | DOI | MR | Zbl

[6] S. C. Kleene, “Turing-machine computable functionals of finite types”, Logic, methodology and philosophy of science, Proc. of the 1960 International congress, Stanford University Press, 1962, 38–45 | MR

[7] P. Aczel, P. A. Hinman, “Recursion in the superjump”, Generalized Recursion Theory, North Holland, 1974 | MR

[8] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, izd-vo «Mir», Moskva, 1972 | MR

[9] S. K. Klini, Vvedenie v metamatematiku, IL, Moskva, 1957

[10] W. Richter, “Recursively Mahlo ordinals and inductive definitions”, Proc. Summer School and Colloquium in Math. Logic (Manchester, August 1969), North Holland, 1971, 273–288 | MR