@article{SM_1976_30_1_a1,
author = {N. V. Beljakin},
title = {Iterated {Kleene} computability and the superjump},
journal = {Sbornik. Mathematics},
pages = {17--37},
year = {1976},
volume = {30},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/}
}
N. V. Beljakin. Iterated Kleene computability and the superjump. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 17-37. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a1/
[1] N. V. Belyakin, “Obobschennye vychisleniya i arifmetika vtoroi stupeni”, Algebra i logika, 9:4 (1970), 375–405 | Zbl
[2] N. V. Belyakin, “Obobschennye vychisleniya”, Trudy matem. instituta im. V. A. Steklova, CXXXIII (1973), 59–64
[3] N. V. Belyakin, “Ob odnom klasse rekursivnykh ierarkhii”, Algebra i logika, 12:1 (1973), 3–21 | MR | Zbl
[4] N. V. Belyakin, “Obobschennye vychisleniya nad regulyarnymi numeratsiyami”, Algebra i logika, 12:6 (1973), 623–643 | MR | Zbl
[5] S. C. Kleene, “Recursive functionals and quantifiers of finite types”, Trans. Amer. Math. Soc., 91 (1959), 1–52 | DOI | MR | Zbl
[6] S. C. Kleene, “Turing-machine computable functionals of finite types”, Logic, methodology and philosophy of science, Proc. of the 1960 International congress, Stanford University Press, 1962, 38–45 | MR
[7] P. Aczel, P. A. Hinman, “Recursion in the superjump”, Generalized Recursion Theory, North Holland, 1974 | MR
[8] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, izd-vo «Mir», Moskva, 1972 | MR
[9] S. K. Klini, Vvedenie v metamatematiku, IL, Moskva, 1957
[10] W. Richter, “Recursively Mahlo ordinals and inductive definitions”, Proc. Summer School and Colloquium in Math. Logic (Manchester, August 1969), North Holland, 1971, 273–288 | MR