On spectral decompositions of functions in~$H_p^\alpha$
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to a study of the spectral resolutions $E_\lambda f$ and their Riesz means $E_\lambda^sf$, corresponding to selfadjoint extensions of elliptic differential operators $A(x,D)$ of order $m$ in an $N$-dimensional domain $G$. It is proved that if $f$ belongs to the Nikol'skii class $\overset\circ H{}_p^\alpha(G)$ and has compact support in $G$, then for
$$
\alpha>0,\quad s\geqslant0,\quad\alpha+s\geqslant\frac{N-1}2,\quad p\alpha>N
$$
the Riesz means $E_\lambda^sf$ converge for $\lambda\to\infty$ to $f$ uniformly on each compact set $K\subset G$.
Bibliography: 9 titles.
@article{SM_1976_30_1_a0,
author = {Sh. A. Alimov},
title = {On spectral decompositions of functions in~$H_p^\alpha$},
journal = {Sbornik. Mathematics},
pages = {1--16},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/}
}
Sh. A. Alimov. On spectral decompositions of functions in~$H_p^\alpha$. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/