On spectral decompositions of functions in~$H_p^\alpha$
Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a study of the spectral resolutions $E_\lambda f$ and their Riesz means $E_\lambda^sf$, corresponding to selfadjoint extensions of elliptic differential operators $A(x,D)$ of order $m$ in an $N$-dimensional domain $G$. It is proved that if $f$ belongs to the Nikol'skii class $\overset\circ H{}_p^\alpha(G)$ and has compact support in $G$, then for $$ \alpha>0,\quad s\geqslant0,\quad\alpha+s\geqslant\frac{N-1}2,\quad p\alpha>N $$ the Riesz means $E_\lambda^sf$ converge for $\lambda\to\infty$ to $f$ uniformly on each compact set $K\subset G$. Bibliography: 9 titles.
@article{SM_1976_30_1_a0,
     author = {Sh. A. Alimov},
     title = {On spectral decompositions of functions in~$H_p^\alpha$},
     journal = {Sbornik. Mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/}
}
TY  - JOUR
AU  - Sh. A. Alimov
TI  - On spectral decompositions of functions in~$H_p^\alpha$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 1
EP  - 16
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/
LA  - en
ID  - SM_1976_30_1_a0
ER  - 
%0 Journal Article
%A Sh. A. Alimov
%T On spectral decompositions of functions in~$H_p^\alpha$
%J Sbornik. Mathematics
%D 1976
%P 1-16
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/
%G en
%F SM_1976_30_1_a0
Sh. A. Alimov. On spectral decompositions of functions in~$H_p^\alpha$. Sbornik. Mathematics, Tome 30 (1976) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SM_1976_30_1_a0/