On uniform convergence of Fourier series
Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 475-495 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f(x)$ be a continuous $2\pi$-periodic function, $S_n(f, x)$ the $n$th partial sum of its Fourier series, $\omega(\delta,f)$ the modulus of continuity and $v(n,f)$ the modulus of variation of $f(x)$. In this paper the following theorems are proved. Theorem 1. {\it For $f(x)\in C(0,2\pi)$ the estimate $$ \|f(x)-S_n(f, x)\|_{C(0,2\pi)}\leqslant C\min_{1\leqslant m\leqslant[\frac{n-1}2]}\Biggl\{\omega\biggl(\frac1n,f\biggr)\sum_{k=1}^m\frac1k+\sum_{k=m+1}^{[\frac{n-1}2]}\frac{v(k,f)}{k^2}\Biggr\},\quad n\geqslant3, $$ holds, where $C$ is an absolute constant.} From this theorem there follows an estimate of Lebesgue and an estimate of Oskolkov. Theorem 2. {\it In order that all Fourier series of class $H^\omega\cap V[v(n)]$ converge uniformly it is necessary and sufficient that $$ \lim_{n\to\infty}\min_{1\leqslant m\leqslant[\frac{n-1}2]}\Biggl\{\omega\biggl(\frac1n\biggr)\sum_{k=1}^m\frac1k+\sum_{k=m+1}^{[\frac{n-1}2]}\frac{v(k)}{k^2}\Biggr\}=0. $$ } Bibliography: 20 titles.
@article{SM_1976_29_4_a3,
     author = {Z. A. Chanturiya},
     title = {On uniform convergence of {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {475--495},
     year = {1976},
     volume = {29},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a3/}
}
TY  - JOUR
AU  - Z. A. Chanturiya
TI  - On uniform convergence of Fourier series
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 475
EP  - 495
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_4_a3/
LA  - en
ID  - SM_1976_29_4_a3
ER  - 
%0 Journal Article
%A Z. A. Chanturiya
%T On uniform convergence of Fourier series
%J Sbornik. Mathematics
%D 1976
%P 475-495
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_29_4_a3/
%G en
%F SM_1976_29_4_a3
Z. A. Chanturiya. On uniform convergence of Fourier series. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 475-495. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a3/

[1] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, Moskva, 1961 | MR

[2] A. Zigmund, Trigonometricheskie ryady, t. I, izd-vo «Mir», Moskva, 1965 | MR

[3] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Publ. Massachusets Inst. Techn., 3 (1924), 72–94 | Zbl

[4] I. Marcinkiewicz, Collected papers, Warszawa, 1964 | Zbl

[5] L. C. Young, “Sur une généralisation de la notion de variation de poissance $p$-iéme bornee au sence de N. Wiener, et sur la convergence des séries de Fourier”, C. r. Acad. scient, Paris, 204 (1937), 470–472 | Zbl

[6] R. Salem, Essais sur les séries trigonometriques, Acta scient Ind., 862, Paris, 1940 | MR | Zbl

[7] K. I. Oskolkov, “Obobschennaya variatsiya, indikatrisa Banakha i ravnomernaya skhodimost ryadov Fure”, Matem. zametki, 12:3 (1972), 313–324 | MR | Zbl

[8] S. B. Stechkin, “O priblizhenii nepreryvnykh funktsii summami Fure”, Uspekhi matem. nauk, VII:4 (1952), 139–141

[9] A. Baernstein, “On the Fourier series of functions of bounded $\Phi$-variation”, Studia Math., 42:3 (1972), 243–248 | MR | Zbl

[10] B. I. Golubov, “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii obobschennoi ogranichennoi variatsii”, Matem. sb., 89 (131) (1972), 630–653 | MR | Zbl

[11] D. Waterman, “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | MR | Zbl

[12] S. M. Nikolskii, “Ryad Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52:3 (1946), 191–194

[13] K. I. Oskolkov, “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Trudy Matem. in-ta im. V. A. Steklova, CXII (1971), 337–345 | MR

[14] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, Moskva, 1958

[15] A. V. Efimov, “Lineinye metody priblizheniya nepreryvnykh periodicheskikh funktsii”, Matem. sb., 54(96) (1961), 51–90 | MR | Zbl

[16] K. I. Oskolkov, “Podposledovatelnost summ Fure funktsii s zadannym modulem nepreryvnosti”, Matem. sb., 88(130) (1972), 447–469 | MR | Zbl

[17] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960

[18] H. Lebesgue, “Sur la représentation trigonometrique approchée des fonctions satisfaisant a une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR | Zbl

[19] Z. A. Chanturiya, “Modul izmeneniya funktsii i ego primeneniya v teorii ryadov Fure”, DAN SSSR, 214:1 (1974), 63–66 | Zbl

[20] Z. A. Chanturiya, “Ob absolyutnoi skhodimosti ryadov Fure”, Matem. zametki, 18:2 (1975), 185–192 | MR | Zbl