Some boundary properties of abstract analytic functions, and their applications
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 453-474
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study boundary properties of analytic functions of the Hardy and Nevanlinna classes, defined in the unit disk, with values in a Fréchet space $E'$, the strong dual of a locally convex topological space $E$. In particular, necessary and sufficient conditions are given for angular limiting values of these functions to exist almost everywhere on a subset $M$, $\operatorname{mes}M>0$, of the unit circle in the topology of the space $E'$. The results obtained are used to investigate boundary properties of compact families of complex-valued holomorphic functions.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1976_29_4_a2,
     author = {A. A. Danilevich},
     title = {Some boundary properties of abstract analytic functions, and their applications},
     journal = {Sbornik. Mathematics},
     pages = {453--474},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a2/}
}
                      
                      
                    A. A. Danilevich. Some boundary properties of abstract analytic functions, and their applications. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 453-474. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a2/
