On a~generalization of Frobenius' theorem to infinite groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 441-451
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the following theorem is proved.
Theorem. Suppose $G$ is a group, $H$ is a subgroup, and $a$ is an element of prime order $p\ne2$ in $H$ such that a) {\it$(G, H)$ is a Frobenius pair, i.e. $H\cap g^{-1}Hg=1$ for all $g\in G\setminus H$};
b) {\it for any $g\in G\setminus H$ the group $\langle a,g^{-1}ag\rangle$ is finite.
Then $G = F_p\leftthreetimes H$, where $F_p$ is a periodic group containing no 
$p$-elements, and either $H$ possesses a unique involution or $H=N_G(\langle a\rangle)$.}
Examples of periodic groups are given to show that the conditions $p\ne2$ and b) are essential restrictions in the theorem.
It is proved that in the class of periodic biprimitively finite groups the existence in a group $G$ of a Frobenius pair $(G, H)$ already implies that $G=F_p\leftthreetimes H$ and $G$ admits a partition, i.e. $F^\#_p = F_p\setminus\{1\}=G\setminus\bigcup_{x\in G}H^x$.
Bibliography: 14 titles.
			
            
            
            
          
        
      @article{SM_1976_29_4_a1,
     author = {A. I. Sozutov and V. P. Shunkov},
     title = {On a~generalization of {Frobenius'} theorem to infinite groups},
     journal = {Sbornik. Mathematics},
     pages = {441--451},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a1/}
}
                      
                      
                    A. I. Sozutov; V. P. Shunkov. On a~generalization of Frobenius' theorem to infinite groups. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 441-451. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a1/
