@article{SM_1976_29_4_a1,
author = {A. I. Sozutov and V. P. Shunkov},
title = {On a~generalization of {Frobenius'} theorem to infinite groups},
journal = {Sbornik. Mathematics},
pages = {441--451},
year = {1976},
volume = {29},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a1/}
}
A. I. Sozutov; V. P. Shunkov. On a generalization of Frobenius' theorem to infinite groups. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 441-451. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a1/
[1] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh”, Izv. AN SSSR, seriya matem., 32 (1968), 212–244 ; 251–524 ; 700–731 | Zbl
[2] S. I. Adyan, “O podgruppakh svobodnykh periodicheskikh grupp nechetnogo pokazatelya”, Trudy Matem. in-ta im. V. A. Steklova, CXII (1971), 64–72 | MR
[3] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, izd-vo «Nauka», Moskva, 1968 | MR
[4] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, izd-vo «Nauka», Moskva, 1972 | MR
[5] A. I. Starostin, “O gruppakh Frobeniusa”, Ukr. matem. zh., 23:5 (1971), 629–639 | MR | Zbl
[6] M. Kholl, Teoriya grupp, IL, Moskva, 1962
[7] S. N. Chernikov, “Gruppy s usloviem minimalnosti dlya neabelevykh podgrupp”, Gruppy s ogranicheniyami dlya podgrupp, Kiev, 1971, 96–105
[8] O. Yu. Shmidt, Lokalnaya konechnost odnogo klassa beskonechnykh periodicheskikh grupp, Izbr. trudy, izd-vo AN SSSR, Moskva, 1959
[9] V. P. Shunkov, “O nekotorom obobschenii teoremy Frobeniusa na periodicheskie gruppy”, Algebra i logika, 6:3 (1967), 113–124 | MR
[10] V. P. Shunkov, “Ob abelevykh podgruppakh v bioprimitivno konechnykh gruppakh”, Algebra i logika, 12:5 (1973), 603–614 | Zbl
[11] G. Frobenius, “Über auflösbare Gruppen, IV”, Sitzungsber. Preuss. Akad. Wiss. zu Berlin, 1901, 1216–1230 | Zbl
[12] W. Burnside, Theory of Groups of Finite Order, 1911
[13] M. Suzuki, “On finite groups with cyclic Sylow subroups for all odd primes”, Amer. J. Math., 77 (1955), 657–691 | DOI | MR | Zbl
[14] H. Zassenhaus, “Über endliche Fastkörper”, Hamb. Abh., 11 (1936), 187–220 | DOI