Bicommutators of fully divisible modules
Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 431-440
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the module $M_R$, injective with respect to the pair $R/K\subseteq E(R/K)$, where $K=0:M$, and form the ring $Q_M (R)$ by constructing rings of quotients with respect to torsion. We find necessary and sufficient conditions on $M_R$ for $Q_M (R)$ to coincide with the bicommutator of $M_R$. Among the consequences of this are the well-known results of Beachy and Morita on bicommutators of coexact fully divisible modules and of injective endofinite modules.
Bibliography: 7 titles.
@article{SM_1976_29_4_a0,
author = {A. I. Kashu},
title = {Bicommutators of fully divisible modules},
journal = {Sbornik. Mathematics},
pages = {431--440},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/}
}
A. I. Kashu. Bicommutators of fully divisible modules. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/