Bicommutators of fully divisible modules
Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 431-440

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the module $M_R$, injective with respect to the pair $R/K\subseteq E(R/K)$, where $K=0:M$, and form the ring $Q_M (R)$ by constructing rings of quotients with respect to torsion. We find necessary and sufficient conditions on $M_R$ for $Q_M (R)$ to coincide with the bicommutator of $M_R$. Among the consequences of this are the well-known results of Beachy and Morita on bicommutators of coexact fully divisible modules and of injective endofinite modules. Bibliography: 7 titles.
@article{SM_1976_29_4_a0,
     author = {A. I. Kashu},
     title = {Bicommutators of fully divisible modules},
     journal = {Sbornik. Mathematics},
     pages = {431--440},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Bicommutators of fully divisible modules
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 431
EP  - 440
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/
LA  - en
ID  - SM_1976_29_4_a0
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Bicommutators of fully divisible modules
%J Sbornik. Mathematics
%D 1976
%P 431-440
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/
%G en
%F SM_1976_29_4_a0
A. I. Kashu. Bicommutators of fully divisible modules. Sbornik. Mathematics, Tome 29 (1976) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/SM_1976_29_4_a0/