Asymptotic behavior of the solution of a~singular integral equation with a~small parameter
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 411-429
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an asymptotic expansion as $h\to0$ that is uniform in $x\geqslant0$ of the solution of the singular integral equation
$$
\int^\infty_0\frac{\rho(t)}{x-t}\,dt+\int^\infty_0K(x-t,h)\rho(t)\,dt=f(x).
$$ Bibliography: 3 titles.
@article{SM_1976_29_3_a8,
author = {V. Yu. Novokshenov},
title = {Asymptotic behavior of the solution of a~singular integral equation with a~small parameter},
journal = {Sbornik. Mathematics},
pages = {411--429},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/}
}
V. Yu. Novokshenov. Asymptotic behavior of the solution of a~singular integral equation with a~small parameter. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 411-429. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/