Asymptotic behavior of the solution of a~singular integral equation with a~small parameter
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 411-429

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an asymptotic expansion as $h\to0$ that is uniform in $x\geqslant0$ of the solution of the singular integral equation $$ \int^\infty_0\frac{\rho(t)}{x-t}\,dt+\int^\infty_0K(x-t,h)\rho(t)\,dt=f(x). $$ Bibliography: 3 titles.
@article{SM_1976_29_3_a8,
     author = {V. Yu. Novokshenov},
     title = {Asymptotic behavior of the solution of a~singular integral equation with a~small parameter},
     journal = {Sbornik. Mathematics},
     pages = {411--429},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Asymptotic behavior of the solution of a~singular integral equation with a~small parameter
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 411
EP  - 429
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/
LA  - en
ID  - SM_1976_29_3_a8
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Asymptotic behavior of the solution of a~singular integral equation with a~small parameter
%J Sbornik. Mathematics
%D 1976
%P 411-429
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/
%G en
%F SM_1976_29_3_a8
V. Yu. Novokshenov. Asymptotic behavior of the solution of a~singular integral equation with a~small parameter. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 411-429. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a8/