On finite simple groups containing strongly isolated subgroups
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 403-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that a finite simple group $G$ containing a strongly isolated subgroup whose order is divisible by $3$ has a $2$-local subgroup whose order is also divisible by $3$. Then $G$ is isomorphic either to $\operatorname{PSL}(3,4)$ or to $\operatorname{PSL}(2,q)$ for a suitable $q$. If a finite simple group $G$ contains for some prime number $p\in\{3,5\}\cap\pi(G)$ a strongly isolated subgroup whose order is divisible by $p$, then $G$ is isomorphic to one of the groups $\operatorname{PSL}(3,4)$, $\operatorname{PSL}(2,q)$ for a suitable $q$, or $\operatorname{Sz}(2^{2m+1})$, $m>0$. A number of other results on groups containing strongly isolated subgroups are also derived in the paper. Bibliography: 13 titles.
@article{SM_1976_29_3_a7,
     author = {N. D. Podufalov},
     title = {On finite simple groups containing strongly isolated subgroups},
     journal = {Sbornik. Mathematics},
     pages = {403--409},
     year = {1976},
     volume = {29},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a7/}
}
TY  - JOUR
AU  - N. D. Podufalov
TI  - On finite simple groups containing strongly isolated subgroups
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 403
EP  - 409
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_3_a7/
LA  - en
ID  - SM_1976_29_3_a7
ER  - 
%0 Journal Article
%A N. D. Podufalov
%T On finite simple groups containing strongly isolated subgroups
%J Sbornik. Mathematics
%D 1976
%P 403-409
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_29_3_a7/
%G en
%F SM_1976_29_3_a7
N. D. Podufalov. On finite simple groups containing strongly isolated subgroups. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 403-409. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a7/

[1] M. Suzuki, “Two characteristic properties of $ZT$-groups”, Osaka Math. J., 15 (1963), 143–150 | MR | Zbl

[2] L. R. Fletcher, “A transfer theorem for $C\Theta\Theta$-groups”, Quart. J. Math., 22:88 (1971), 505–533 | DOI | MR | Zbl

[3] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968 | MR | Zbl

[4] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, izd-vo «Nauka», Moskva, 1968 | MR

[5] R. P. Martineau, “On simple groups of order prime to 3”, Proc. London. Math. Soc., 25 (1972), 213–252 | DOI | MR | Zbl

[6] J. G. Thompson, “Nonsolvable finite groups all whose local subgroups are solvable, I”, Bull. Amer. Math. Soc., 74 (1968), 383–437 | DOI | MR | Zbl

[7] G. Higman, Odd characterizations of finite simple groups, Lecture notes University of Michigan, 1968

[8] W. B. Stewart, “Groups having strongly self-centralizing 3-centralizers”, Proc. London. Math. Soc., 26 (1973), 653–680 | DOI | MR | Zbl

[9] D. Gorenstein, “Finite groups the centralizers of whose involutions have normal 2-complements”, Canad. J. Math., 21 (1969), 335–357 | MR | Zbl

[10] D. Gorenstein, J. Walter, “The characterization of finite groups with dihedral Sylow 2-subgroups”, J. Algebra, 2 (1965), 85–151 ; 218–270 ; 354–393 | DOI | MR | Zbl | MR | MR | Zbl

[11] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Amer. Math. Soc., 151:1 (1970), 1–261 | DOI | MR | Zbl

[12] D. M. Goldschmidt, “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR | Zbl

[13] N. D. Podufalov, “Konechnye prostye gruppy bez elementov poryadka 6 i 10”, Algebra i logika, 14:1 (1975), 79–85 | MR | Zbl