Nontriviality of Sobolev spaces of infinite order for a full Euclidean space and a torus
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 393-401
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we obtain necessary and sufficient conditions for nontriviality of the spaces $$ W^\infty\{a_\alpha,p_\alpha\}\equiv\biggl\{u(x):\rho(u)\equiv\sum_{|\alpha|=0}^\infty a_\alpha\|D^\alpha u\|^{p_\alpha}_{L_{r_\alpha}}<\infty\biggr\} $$ in the cases where the functions $u(x)$ are defined on $\mathbf R^n$ or are periodic with period $2\pi$ with respect to $n$ variables. Bibliography: 5 titles.
@article{SM_1976_29_3_a6,
author = {Yu. A. Dubinskii},
title = {Nontriviality of {Sobolev} spaces of infinite order for a~full {Euclidean} space and a~torus},
journal = {Sbornik. Mathematics},
pages = {393--401},
year = {1976},
volume = {29},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a6/}
}
Yu. A. Dubinskii. Nontriviality of Sobolev spaces of infinite order for a full Euclidean space and a torus. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 393-401. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a6/
[1] Yu. A. Dubinskii, “Prostranstva Soboleva beskonechnogo poryadka i povedenie reshenii nekotorykh kraevykh zadach pri neogranichennom vozrastanii poryadka uravneniya”, Matem. sb., 98 (140) (1975), 163–184 | MR | Zbl
[2] I. Stein, G. Veiss, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, izd-vo «Mir», Moskva, 1974 | MR
[3] A. Zigmund, Trigonometricheskie ryady, t. 1, 2, izd-vo «Mir», Moskva, 1965 | MR
[4] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, 1958
[5] Yu. A. Dubinskii, “Prostranstva Soboleva beskonechnogo poryadka na tore i nekotorye voprosy teorii periodicheskikh reshenii differentsialnykh uravnenii”, DAN SSSR, 222:2 (1975), 269–272 | MR | Zbl