On the instability of a~minimal surface in an $n$-dimensional Riemannian space of positive curvature
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 359-375
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the question of minimal two-dimensional surfaces in an $n$-dimensional Riemannian space (surfaces with zero mean curvature vector) is investigated.
Bibliography: 24 titles.
@article{SM_1976_29_3_a4,
author = {Yu. A. Aminov},
title = {On the instability of a~minimal surface in an $n$-dimensional {Riemannian} space of positive curvature},
journal = {Sbornik. Mathematics},
pages = {359--375},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a4/}
}
TY - JOUR AU - Yu. A. Aminov TI - On the instability of a~minimal surface in an $n$-dimensional Riemannian space of positive curvature JO - Sbornik. Mathematics PY - 1976 SP - 359 EP - 375 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_29_3_a4/ LA - en ID - SM_1976_29_3_a4 ER -
Yu. A. Aminov. On the instability of a~minimal surface in an $n$-dimensional Riemannian space of positive curvature. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 359-375. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a4/