Solvable just-non-Cross varieties of Lie rings
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 345-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A variety of Lie rings is called just-non-Cross if it itself is not Cross, but each of its proper subvarieties is Cross, i.e. is generated by a finite ring. In this paper, we completely describe the solvable just-non-Cross varieties both of Lie rings and of Lie $R$-algebras where $R$ is a finite commutative ring with identity and, in particular, where $R$ is a finite field. We find algorithms which allow us to determine whether a given identity defines a Cross variety of Lie algebras; also, using the multiplication and addition tables of a finite Lie algebra, we find algorithms for extracting its identities. Bibliography: 10 titles.
@article{SM_1976_29_3_a3,
     author = {Yu. A. Bahturin and A. Yu. Ol'shanskii},
     title = {Solvable {just-non-Cross} varieties of {Lie} rings},
     journal = {Sbornik. Mathematics},
     pages = {345--358},
     year = {1976},
     volume = {29},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a3/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
AU  - A. Yu. Ol'shanskii
TI  - Solvable just-non-Cross varieties of Lie rings
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 345
EP  - 358
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_3_a3/
LA  - en
ID  - SM_1976_29_3_a3
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%A A. Yu. Ol'shanskii
%T Solvable just-non-Cross varieties of Lie rings
%J Sbornik. Mathematics
%D 1976
%P 345-358
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1976_29_3_a3/
%G en
%F SM_1976_29_3_a3
Yu. A. Bahturin; A. Yu. Ol'shanskii. Solvable just-non-Cross varieties of Lie rings. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 345-358. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a3/

[1] Yu. A. Bakhturin, A. Yu. Olshanskii, “Tozhdestvennye sootnosheniya v konechnykh koltsakh Li”, Matem. sb., 96(138):4 (1975), 543–559 | MR | Zbl

[2] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets, II”, Algebra i logika, 12:6 (1973), 667–688 | MR

[3] A. Yu. Olshanskii, “Razreshimye pochti krossovy mnogoobraziya grupp”, Matem. sb., 85 (127) (1971), 115–131

[4] Yu. P. Razmyslov, “Ob odnom primere nerazreshimykh pochti krossovykh mnogoobrazii grupp”, Algebra i logika, 11:2 (1972), 186–205 | MR | Zbl

[5] V. A. Artamonov, “Tsepnye mnogoobraziya lineinykh algebr”, Trudy Mosk. Matem. ob-va, XXIX (1973), 51–78 | MR

[6] P. Kon, Universalnaya algebra, izd-vo «Mir», Moskva, 1968 | MR

[7] Kh. Neiman, Mnogoobraziya grupp, izd-vo «Mir», Moskva, 1969 | MR

[8] N. Burbaki, Gruppy i algebry Li, izd-vo «Mir», Moskva, 1976 | MR

[9] D. W. Barnes, M. L. Newell, “Some theorems on saturated homomorphs of soluble Lie algebras”, Math. Z., 115 (1970), 179–187 | DOI | MR | Zbl

[10] S. Leng, Algebra, izd-vo «Mir», Moskva, 1968