On the representation of analytic functions by series of exponentials in a polycylindrical domain
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 327-344
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the following Theorem. {\it Let $D_p$ $(1\leqslant p\leqslant m)$ be a finite convex domain in the plane of the complex variable $z_p$, let $K_p(\varphi)$ be the support function of the domain $D_p$, and let $h_p(\varphi)=K_p(-\varphi)$. Then there exists a sequence of exponents $\{\lambda^{(p)}_k\}_{k=1}^\infty$ $($where the $\lambda^{(p)}_k$ $(k=1,2,\dots)$ are the zeros of an entire function $L_p(\lambda)$ of completely regular growth with indicator function $h_p(\varphi))$ such that any function $f(z_1,\dots,z_m)$ analytic in the domain $D=D_1\times\dots\times D_m$ can be represented in $D$ by the series $$ f(z_1,\dots,z_m)=\sum^\infty_{k_1,\dots,k_m=1}a_{k_1,\dots,k_m}\exp\bigl\{\lambda^{(1)}_{k_1}z_1+\dots+ \lambda^{(m)}_{k_m}z_m\bigr\}, $$ which is absolutely convergent in $D$ and uniformly convergent inside $D$.} For the case $m=1$ the theorem has been proved earlier (RZhMat., 1970, 10B132). Bibliography: 5 titles.
@article{SM_1976_29_3_a2,
author = {A. F. Leont'ev},
title = {On the representation of analytic functions by series of exponentials in a~polycylindrical domain},
journal = {Sbornik. Mathematics},
pages = {327--344},
year = {1976},
volume = {29},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a2/}
}
A. F. Leont'ev. On the representation of analytic functions by series of exponentials in a polycylindrical domain. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 327-344. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a2/
[1] A. F. Leontev, “O predstavlenii tselykh funktsii mnogikh peremennykh ryadami Dirikhle”, Matem. sb., 89 (131) (1972), 586–598 | MR
[2] A. F. Leontev, “O predstavlenii analiticheskikh funktsii v otkrytoi oblasti ryadami Dirikhle”, Matem. sb., 81 (123) (1970), 552–579 | MR
[3] A. F. Leontev, “K voprosu o predstavlenii analiticheskikh funktsii ryadami Dirikhle”, Matem. sb., 80 (122) (1969), 117–156 | MR
[4] A. F. Leontev, “Ob usloviyakh razlozhimosti analiticheskikh funktsii v ryady Dirikhle”, Izv. AN SSSR, seriya matem., 36 (1972), 1282–1295 | MR
[5] A. F. Leontev, “Predstavlenie funktsii obobschennymi ryadami Dirikhle”, Uspekhi matem. nauk, XXIV:2 (146) (1969), 97–164 | MR