On the representation of analytic functions by series of exponentials in a~polycylindrical domain
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 327-344
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove the following
Theorem. {\it Let $D_p$ $(1\leqslant p\leqslant m)$ be a finite convex domain in the plane of the complex variable $z_p$, let $K_p(\varphi)$ be the support function of the domain $D_p$, and let $h_p(\varphi)=K_p(-\varphi)$. Then there exists a sequence of exponents $\{\lambda^{(p)}_k\}_{k=1}^\infty$ $($where the $\lambda^{(p)}_k$ $(k=1,2,\dots)$ are the zeros of an entire function $L_p(\lambda)$ of completely regular growth with indicator function $h_p(\varphi))$ such that any function $f(z_1,\dots,z_m)$ analytic in the domain $D=D_1\times\dots\times D_m$ can be represented in $D$ by the series
$$
f(z_1,\dots,z_m)=\sum^\infty_{k_1,\dots,k_m=1}a_{k_1,\dots,k_m}\exp\bigl\{\lambda^{(1)}_{k_1}z_1+\dots+
\lambda^{(m)}_{k_m}z_m\bigr\},
$$
which is absolutely convergent in $D$ and uniformly convergent inside $D$.}
For the case $m=1$ the theorem has been proved earlier (RZhMat., 1970, 10B132).
Bibliography: 5 titles.
			
            
            
            
          
        
      @article{SM_1976_29_3_a2,
     author = {A. F. Leont'ev},
     title = {On the representation of analytic functions by series of exponentials in a~polycylindrical domain},
     journal = {Sbornik. Mathematics},
     pages = {327--344},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_3_a2/}
}
                      
                      
                    TY - JOUR AU - A. F. Leont'ev TI - On the representation of analytic functions by series of exponentials in a~polycylindrical domain JO - Sbornik. Mathematics PY - 1976 SP - 327 EP - 344 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_29_3_a2/ LA - en ID - SM_1976_29_3_a2 ER -
A. F. Leont'ev. On the representation of analytic functions by series of exponentials in a~polycylindrical domain. Sbornik. Mathematics, Tome 29 (1976) no. 3, pp. 327-344. http://geodesic.mathdoc.fr/item/SM_1976_29_3_a2/
