On explicit formulas for solutions of stochastic equations
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 239-256

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the proof of some criteria for the existence of a strong solution of a stochastic integral equation of the form $dx_t=\sigma(t,x_t)\,dw_t+b(t,x_t)\,dt$. One of the criteria appears as a Fredholm alternative; others are formulated in terms of the theory of differential equations of parabolic type. The proof of these criteria is based on finding formulas expressing $\mathsf M\{\varphi(x_t)|\mathscr F^w_t\}$ via multiple stochastic integrals, formulas which in the case $\varphi(x)\equiv x$ give an expression for $x_t$, if $x_t$ is a strong solution of the stochastic equation. Bibliography: 11 titles.
@article{SM_1976_29_2_a8,
     author = {A. Yu. Veretennikov and N. V. Krylov},
     title = {On explicit formulas for solutions of stochastic equations},
     journal = {Sbornik. Mathematics},
     pages = {239--256},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
AU  - N. V. Krylov
TI  - On explicit formulas for solutions of stochastic equations
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 239
EP  - 256
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/
LA  - en
ID  - SM_1976_29_2_a8
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%A N. V. Krylov
%T On explicit formulas for solutions of stochastic equations
%J Sbornik. Mathematics
%D 1976
%P 239-256
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/
%G en
%F SM_1976_29_2_a8
A. Yu. Veretennikov; N. V. Krylov. On explicit formulas for solutions of stochastic equations. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 239-256. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/