On explicit formulas for solutions of stochastic equations
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 239-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the proof of some criteria for the existence of a strong solution of a stochastic integral equation of the form $dx_t=\sigma(t,x_t)\,dw_t+b(t,x_t)\,dt$. One of the criteria appears as a Fredholm alternative; others are formulated in terms of the theory of differential equations of parabolic type. The proof of these criteria is based on finding formulas expressing $\mathsf M\{\varphi(x_t)|\mathscr F^w_t\}$ via multiple stochastic integrals, formulas which in the case $\varphi(x)\equiv x$ give an expression for $x_t$, if $x_t$ is a strong solution of the stochastic equation. Bibliography: 11 titles.
@article{SM_1976_29_2_a8,
     author = {A. Yu. Veretennikov and N. V. Krylov},
     title = {On explicit formulas for solutions of stochastic equations},
     journal = {Sbornik. Mathematics},
     pages = {239--256},
     year = {1976},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
AU  - N. V. Krylov
TI  - On explicit formulas for solutions of stochastic equations
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 239
EP  - 256
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/
LA  - en
ID  - SM_1976_29_2_a8
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%A N. V. Krylov
%T On explicit formulas for solutions of stochastic equations
%J Sbornik. Mathematics
%D 1976
%P 239-256
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/
%G en
%F SM_1976_29_2_a8
A. Yu. Veretennikov; N. V. Krylov. On explicit formulas for solutions of stochastic equations. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 239-256. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a8/

[1] N. V. Krylov, “Nekotorye otsenki plotnosti raspredeleniya stokhasticheskogo integrala”, Izv. AN SSSR, seriya matem., 38 (1974), 228–248 | MR | Zbl

[2] A. K. Zvonkin, N. V. Krylov, “O silnykh resheniyakh stokhasticheskikh uravnenii”, Trudy shkoly-seminara po sluchainym protsessam v g. Druskininkai, 1975

[3] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, izd-vo «Nauka», Moskva, 1967

[4] N. V. Krylov, “Nekotorye svoistva kvazidiffuzionnogo protsessa”, Uspekhi matem. nauk, XXI:1 (127) (1966), 177–179 | MR

[5] T. Yamada, S. Watanabe, “On the uniquness of solutions of stochastic differential equations. I; II”, J. Math. Kyoto Univ., 11:1 (1971), 155–167 | MR | Zbl

[6] A. K. Zvonkin, “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, unichtozhayuschee snos”, Matem. sb., 93 (135) (1974), 129–149 | MR | Zbl

[7] N. Danford, Dzh. Shvarts, Lineinye operatory, obschaya teoriya, IL, Moskva, 1962

[8] K. Iosida, Funktsionalnyi analiz, izd-vo «Mir», Moskva, 1967 | MR

[9] K. Jto, “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | MR

[10] I. V. Girsanov, “Stokhasticheskie uravneniya Ito i nekotorye ikh obobscheniya”, Trudy Vilnyusskogo soveschaniya po teorii veroyatnostei, 1960

[11] H. Kunita, S. Watanabe, “On square integrable martingales”, Nagoya Math. J., 30 (1967), 209–245 | MR | Zbl