Local solvability of pseudodifferential operators with characteristics of second multiplicity
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 193-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the local properties of operators whose leading symbol admits a representation in the form of a sum (difference) of squares of operators of principal type. The coefficients are infinitely smooth and are not necessarily of power growth. Necessary and sufficient conditions are formulated in the invariant language of null bicharacteristics and of the subprincipal symbol. Definitive results are obtained for some special classes of equations. The work extends results obtained earlier by the author for operators whose leading symbol is the square of an operator of principal type. Bibliography: 27 titles.
@article{SM_1976_29_2_a5,
     author = {P. R. Popivanov},
     title = {Local solvability of pseudodifferential operators with characteristics of second multiplicity},
     journal = {Sbornik. Mathematics},
     pages = {193--216},
     year = {1976},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a5/}
}
TY  - JOUR
AU  - P. R. Popivanov
TI  - Local solvability of pseudodifferential operators with characteristics of second multiplicity
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 193
EP  - 216
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a5/
LA  - en
ID  - SM_1976_29_2_a5
ER  - 
%0 Journal Article
%A P. R. Popivanov
%T Local solvability of pseudodifferential operators with characteristics of second multiplicity
%J Sbornik. Mathematics
%D 1976
%P 193-216
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a5/
%G en
%F SM_1976_29_2_a5
P. R. Popivanov. Local solvability of pseudodifferential operators with characteristics of second multiplicity. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 193-216. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a5/

[1] C. Caratheodory, Variationsrechnung, Teubner, Berlin, 1935 | Zbl

[2] L. Hörmander, “Differential equations without solutions”, Math. Ann., 140 (1960), 169–173 | DOI | MR | Zbl

[3] I. I. Kohn, L. Nirenberg, “An algebra of pseudodifferential operators”, Comm. Pure Appl. Math., 18:1/2 (1965), 269–305 | DOI | MR | Zbl

[4] L. Hörmander, “Pseudodifferential operators and non-elliptic boundary problems”, Ann. Math., 83:1 (1966), 129–209 | DOI | MR | Zbl

[5] L. Hörmander, “Pseudodifferential operators and hypoelliptic equations”, Proc. Symp. in Pure Math., 10 (1967), 138–183 | MR | Zbl

[6] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[7] Yu. V. Egorov, “Psevdodifferentsialnye operatory glavnogo tipa”, Matem. sb., 73(115) (1967), 356–373

[8] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, izd-vo «Mir», Moskva, 1965 | MR

[9] M. I. Vishik, V. V. Grushin, “Vyrozhdayuschiesya ellipticheskie differentsialnye operatory”, Uspekhi matem. nauk, XXV:4 (154) (1970), 29–56

[10] V. V. Grushin, “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83(125) (1970), 456–473 | Zbl

[11] L. Nirenberg, F. Trèves, “On the local solvability of linear partial differential equations. I: Necessary conditions”, Comm. Pure Appl. Math., 23:1 (1970), 1–38 | DOI | MR | Zbl

[12] E. V. Radkevich, “Gipoellipticheskie operatory s kratnymi kharakteristikami”, Matem. sb., 79 (121) (1969), 193–216 | Zbl

[13] O. A. Oleinik, E. V. Radkevich, Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, Itogi nauki. Ser. Mat. anal. 1969, 8, VINITI, Moskva, 1971 | MR | Zbl

[14] Yu. V. Egorov, “Kanonicheskie preobrazovaniya i psevdodifferentsialnye operatory”, Trudy Mosk. matem. ob-va, XXIV, 1971, 2–28

[15] Yu. V. Egorov, “O neobkhodimykh usloviyakh razreshimosti psevdodifferentsialnykh uravnenii glavnogo tipa”, Trudy Mosk. matem. ob-va, XXIV, 1971, 29–41

[16] Yu. V. Egorov, “O razreshimosti differentsialnykh uravnenii s prostymi kharakteristikami”, Uspekhi matem. nauk, XXVI:2 (158) (1971), 183–198

[17] L. Hörmander, “On the existence and regularity of solutions of linear partial differential operators”, L'enseignement Math., 17:2 (1971), 99–163 | MR | Zbl

[18] F. Trèves, “A new proof of the subelliptic estimates”, Comm. Pure Appl. Math., 24:1 (1971), 71–115 | DOI | MR | Zbl

[19] J. J. Duistermaat, L. Hörmander, “Fourier integral operators, II”, Acta Math., 128:3/4 (1972), 183–269 | DOI | MR | Zbl

[20] Yu. V. Egorov, P. R. Popivanov, “Ob uravneniyakh glavnogo tipa, ne imeyuschikh reshenii”, Uspekhi matem. nauk, XXIX:2 (176) (1974), 172–189

[21] J. Sjöstrand, “Une classe d'operateurs pseudodifferentiels a caracteristiques doubles”, C. r. Acad. scient., Paris, 276 (1973), 743–745 | MR | Zbl

[22] F. Cardoso, F. Trèves, “A necessary conditions of local solvability for pseudodiff. equations with double characteristics”, Ann. Inst. Fourier, Grenoble, 24:1 (1974), 225–295 | MR

[23] L. Boutet de Monvel, F. Trèves, “On a class of pseudodifferential equations with double characteristics”, Invent. Math., 24:1 (1974), 1–24 | DOI | MR | Zbl

[24] F. Trev, “O lokalnoi razreshimosti lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi”, Uspekhi matem. nauk, XXIX:2 (176) (1974), 252–281 | MR

[25] P. R. Popivanov, “O lokalnoi razreshimosti odnogo klassa psevdodifferentsialnykh uravnenii s dvukratnymi kharakteristikami”, Trudy sem. im. I. G. Petrovskogo, 1975, 237–278 | MR | Zbl

[26] P. R. Popivanov, “O lokalnoi razreshimosti psevdodifferentsialnykh uravnenii s 2-kratnymi kharakteristikami”, DAN Bolgarii, 27:5 (1974), 607–609 | MR | Zbl

[27] P. R. Popivanov, “Lokalnaya razreshimost psevdodifferentsialnykh operatorov s kharakteristikami vtoroi kratnosti”, DAN Bolgarii, 27:9 (1974), 1179–1182 | MR | Zbl