A capacity criterion for a domain with stable Dirichlet problem for higher order elliptic equations
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 177-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are obtained under which the Dirichlet problem for elliptic equations of order $2l$, $2l ($n$ is the dimensionality of the space), is stable. Bibliography: 10 titles.
@article{SM_1976_29_2_a3,
     author = {\`E. M. Saak},
     title = {A~capacity criterion for a~domain with stable {Dirichlet} problem for higher order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {177--185},
     year = {1976},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/}
}
TY  - JOUR
AU  - È. M. Saak
TI  - A capacity criterion for a domain with stable Dirichlet problem for higher order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 177
EP  - 185
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/
LA  - en
ID  - SM_1976_29_2_a3
ER  - 
%0 Journal Article
%A È. M. Saak
%T A capacity criterion for a domain with stable Dirichlet problem for higher order elliptic equations
%J Sbornik. Mathematics
%D 1976
%P 177-185
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/
%G en
%F SM_1976_29_2_a3
È. M. Saak. A capacity criterion for a domain with stable Dirichlet problem for higher order elliptic equations. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 177-185. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/

[1] M. V. Keldysh, “O razreshimosti i ustoichivosti zadachi Dirikhle”, Uspekhi matem. nauk, 1941, no. VIII, 171–231 | MR | Zbl

[2] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, izd-vo «Nauka», Moskva, 1966 | MR

[3] I. Babushka, “Ustoichivost oblastei opredeleniya po otnosheniyu k osnovnym zadacham teorii differentsialnykh uravnenii s chastnymi proizvodnymi, glavnym obrazom v svyazi s teoriei uprugosti”, Chekhosl. matem. zh., 11:1 (1961), 76–105 | Zbl

[4] A. A. Gonchar, “O svoistve «neustoichivosti» garmonicheskoi emkosti”, DAN SSSR, 165:3 (1965), 479–481

[5] V. G. Mazya, “Poligarmonicheskaya emkost v teorii pervoi kraevoi zadachi”, Sib. matem. zh., VI:7 (1965), 127–148

[6] V. G. Mazya, “O zadache Dirikhle dlya ellipticheskikh uravnenii proizvolnogo poryadka v neogranichennykh oblastyakh”, DAN SSSR, 150:6 (1963), 1221–1224

[7] V. I. Polovinkin, “Vneshnie zadachi dlya poligarmonicheskogo uravneniya”, DAN SSSR, 194:6 (1970), 1273–1276 | MR | Zbl

[8] E. M. Saak, “Ob ustoichivosti zadach Dirikhle i Neimana”, DAN SSSR, 195:3 (1970), 564–566 | MR | Zbl

[9] E. M. Saak, “Ob ortogonalnykh sistemakh garmonicheskikh i poligarmonicheskikh mnogochlenov”, Sib. matem. zh., XIII:6 (1972), 1330–1346 | MR

[10] E. M. Saak, “Ob ustoichivosti zadachi Dirikhle dlya poligarmonicheskogo uravneniya”, DAN SSSR, 198:4 (1971), 772–775 | MR | Zbl