A~capacity criterion for a~domain with stable Dirichlet problem for higher order elliptic equations
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 177-185

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained under which the Dirichlet problem for elliptic equations of order $2l$, $2l$ ($n$ is the dimensionality of the space), is stable. Bibliography: 10 titles.
@article{SM_1976_29_2_a3,
     author = {\`E. M. Saak},
     title = {A~capacity criterion for a~domain with stable {Dirichlet} problem for higher order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {177--185},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/}
}
TY  - JOUR
AU  - È. M. Saak
TI  - A~capacity criterion for a~domain with stable Dirichlet problem for higher order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 177
EP  - 185
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/
LA  - en
ID  - SM_1976_29_2_a3
ER  - 
%0 Journal Article
%A È. M. Saak
%T A~capacity criterion for a~domain with stable Dirichlet problem for higher order elliptic equations
%J Sbornik. Mathematics
%D 1976
%P 177-185
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/
%G en
%F SM_1976_29_2_a3
È. M. Saak. A~capacity criterion for a~domain with stable Dirichlet problem for higher order elliptic equations. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 177-185. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a3/