The infinitude of the reduced Whitehead group in the Tannaka–Artin problem
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 167-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the methods and results of preceding papers of the author (V. P. Platonov, The Tarmaka–Artin problem and groups of projective conorms, Dokl. Akad. Nauk SSSR, 222, No 6 (1975), 1229–1302; The Tarmaka–Artin problem and reduced $K$-theory, Izv. Akad. Nauk SSSR, Ser. Mat., 40, No 2 (1976), 227–261), in the first part of this paper we find conditions under which the reduced Whitehead group is infinite, and in the second, larger part we give the solution of the Tannaka–Artin problem for cyclic algebras. In particular, we completely calculate the reduced Whitehead group $SK_1(A)$ for cyclic algebras $A$ over formal power series fields and construct cyclic algebras of arbitrary degree $n^2$ with Whitehead group that is arbitrarily large but finite, and also with infinite Whitehead group. Bibliography: 15 titles.
@article{SM_1976_29_2_a2,
     author = {V. P. Platonov},
     title = {The infinitude of the reduced {Whitehead} group in the {Tannaka{\textendash}Artin} problem},
     journal = {Sbornik. Mathematics},
     pages = {167--176},
     year = {1976},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a2/}
}
TY  - JOUR
AU  - V. P. Platonov
TI  - The infinitude of the reduced Whitehead group in the Tannaka–Artin problem
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 167
EP  - 176
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a2/
LA  - en
ID  - SM_1976_29_2_a2
ER  - 
%0 Journal Article
%A V. P. Platonov
%T The infinitude of the reduced Whitehead group in the Tannaka–Artin problem
%J Sbornik. Mathematics
%D 1976
%P 167-176
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a2/
%G en
%F SM_1976_29_2_a2
V. P. Platonov. The infinitude of the reduced Whitehead group in the Tannaka–Artin problem. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a2/

[1] V. P. Platonov, “O probleme Tannaka-Artina”, DAN SSSR, 221:5 (1975), 1038–1041 | MR | Zbl

[2] V. P. Platonov, “Problema Tannaka-Artina i gruppy proektivnykh konorm”, DAN SSSR, 222:6 (1975), 1299–1302 | MR | Zbl

[3] V. P. Platonov, “Problema Tannaka - Artina i privedennaya $K$-teoriya”, Izv. AN SSSR, seriya matem., 40 (1976), 227–262 | MR

[4] V. P. Platonov, “O beskonechnosti privedennoi gruppy Uaitkheda”, DAN SSSR, 227:2 (1976) | MR

[5] T. Nakayama, Y. Matsushima, “Über die multiplikative Gruppe einer $p$-adischen Divisionsalgebra”, Proc. Imper. Acad. Japan, 19 (1943), 622–628 | DOI | MR | Zbl

[6] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72:2 (1950), 323–334 | DOI | MR | Zbl

[7] V. P. Platonov, “Privedennaya gruppa Uaitkheda dlya tsiklicheskikh algebr”, DAN SSSR, 228:1 (1976) | MR | Zbl

[8] A. Albert, Structure of algebras, New York, 1939

[9] J. Tits, “Algebraic and abstract simple groups”, Ann. Math., 80:2 (1964), 313–329 | DOI | MR | Zbl

[10] M. Kneser, “Schwache Approximation in algebraischen Gruppen”, Coll. Theorie des groupes algebriques, Bruxelles, 1962, 41–52 | Zbl

[11] A. Veil, Osnovy teorii chisel, izd-vo «Mir», Moskva, 1972 | MR

[12] Algebraicheskaya teoriya chisel, eds. Dzh. Kassels, A. Frelikh, izd-vo «Mir», Moskva, 1969 | MR

[13] V. P. Platonov, V. I. Yanchevskii, “O gipoteze Khardera”, DAN SSSR, 221:4 (1975), 784–787 | MR | Zbl

[14] S. Leng, Algebraicheskie chisla, izd-vo «Mir», Moskva, 1966 | MR

[15] Kh. Bass, Algebraicheskaya $K$-teoriya, izd-vo «Mir», Moskva, 1973 | MR