On the growth of entire functions represented by regularly convergent function series
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 281-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first part of the article is devoted to the investigation of the growth of entire functions represented by the polynomial series of Abel–Goncharov and Newton, and by Taylor series with variable centering. Under certain assumptions about the sequence of interpolation nodes, we find both the order and sharp lower and upper estimates for the type of an entire function represented by an Abel–Goncharov series. Making various assumptions about the interpolation nodes, we find both the order and a sharp upper estimate for the indicator of an entire function represented by Newton's series, as well as sharp lower and upper estimates for the type of such a function. Bibliography: 14 titles.
@article{SM_1976_29_2_a10,
     author = {V. A. Oskolkov},
     title = {On the growth of entire functions represented by regularly convergent function series},
     journal = {Sbornik. Mathematics},
     pages = {281--302},
     year = {1976},
     volume = {29},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a10/}
}
TY  - JOUR
AU  - V. A. Oskolkov
TI  - On the growth of entire functions represented by regularly convergent function series
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 281
EP  - 302
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a10/
LA  - en
ID  - SM_1976_29_2_a10
ER  - 
%0 Journal Article
%A V. A. Oskolkov
%T On the growth of entire functions represented by regularly convergent function series
%J Sbornik. Mathematics
%D 1976
%P 281-302
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a10/
%G en
%F SM_1976_29_2_a10
V. A. Oskolkov. On the growth of entire functions represented by regularly convergent function series. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 281-302. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a10/

[1] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, Moskva, 1956

[2] V. L. Goncharov, “Recherches sur les dérivées succesives des fonctions analytiques. Généralisation de la série d'Abel”, Ann. Ecole Norm. super., 47 (1930), 1–78

[3] M. A. Evgrafov, “Metod blizkikh sistem v prostranstve analiticheskikh funktsii i ego primeneniya k interpolyatsii”, Trudy Mosk. matem. ob-va, V (1956), 89–201 | MR

[4] V. A. Oskolkov, “Ob otsenkakh polinomov Goncharova”, Matem. sb., 92 (134) (1973), 55–59 | MR | Zbl

[5] V. A. Oskolkov, “Ob interpolyatsionnoi zadache Abelya - Goncharova dlya tselykh funktsii konechnogo i beskonechnogo poryadkov”, Trudy Mosk. in-ta khim. mashinostr., 45 (1972), 35–55

[6] I. I. Ibragimov, Metody interpolyatsii funktsii i nekotorye ikh primeneniya, izd-vo «Nauka», Moskva, 1971 | MR

[7] G. Polia, G. Sege, Zadachi i teoremy iz analiza, ch. I, Gostekhizdat, Moskva, 1956

[8] V. L. Goncharov, “Interpolyatsionnye protsessy i tselye funktsii”, Uspekhi matem. nauk, III (1937), 113–143

[9] A. O. Gelfond, “Problema predstavleniya i edinstvennosti tseloi analiticheskoi funktsii pervogo poryadka”, Uspekhi matem. nauk, 1937, no. III, 144–174

[10] A. O. Gelfond, Ischislenie konechnykh raznostei, izd-vo «Nauka», Moskva, 1967 | MR

[11] K. Sugimura, “Übertragung einiger Satze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen”, Math. Z., 29 (1929), 264–277 | DOI | MR

[12] J. F. Ritt, “On certain points of theory of Dirichlet series”, Amer. J. Math., 50 (1928), 73–86 | DOI | MR | Zbl

[13] F. I. Geche, “Zamechanie o formule bez opredeleniya lineinogo poryadka tseloi funktsii, predstavlennoi ryadom Dirikhle”, Ukr. matem. zh., 16:5 (1964), 678–681 | Zbl

[14] S. R. Orudzhev, “O poryadke i tipe tselykh funktsii, predstavlennykh ryadami Dirikhle”, Izv. VUZov, Matematika, 1974, no. 7, 60–65