A~geometric test for completeness
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 157-165

Voir la notice de l'article provenant de la source Math-Net.Ru

Tests of a geometric character are found for completeness and incompleteness of systems of the form $\{[W(\pm z)]^{2n}\}$, $n=0,1,2,\dots$, in the space of functions analytic in a simply connected domain $D\subset\mathbf C$ symmetric with respect to the origin. Using these results, a number of concrete problems are solved. Bibliography: 3 titles.
@article{SM_1976_29_2_a1,
     author = {Yu. A. Kaz'min},
     title = {A~geometric test for completeness},
     journal = {Sbornik. Mathematics},
     pages = {157--165},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Kaz'min
TI  - A~geometric test for completeness
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 157
EP  - 165
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/
LA  - en
ID  - SM_1976_29_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Kaz'min
%T A~geometric test for completeness
%J Sbornik. Mathematics
%D 1976
%P 157-165
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/
%G en
%F SM_1976_29_2_a1
Yu. A. Kaz'min. A~geometric test for completeness. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 157-165. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/