A geometric test for completeness
Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 157-165
Cet article a éte moissonné depuis la source Math-Net.Ru
Tests of a geometric character are found for completeness and incompleteness of systems of the form $\{[W(\pm z)]^{2n}\}$, $n=0,1,2,\dots$, in the space of functions analytic in a simply connected domain $D\subset\mathbf C$ symmetric with respect to the origin. Using these results, a number of concrete problems are solved. Bibliography: 3 titles.
@article{SM_1976_29_2_a1,
author = {Yu. A. Kaz'min},
title = {A~geometric test for completeness},
journal = {Sbornik. Mathematics},
pages = {157--165},
year = {1976},
volume = {29},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/}
}
Yu. A. Kaz'min. A geometric test for completeness. Sbornik. Mathematics, Tome 29 (1976) no. 2, pp. 157-165. http://geodesic.mathdoc.fr/item/SM_1976_29_2_a1/
[1] R. Edvards, Funktsionalnyi analiz, teoriya i prilozheniya, izd-vo «Mir», Moskva, 1969
[2] Yu. A. Kazmin, Metody interpolyatsii analiticheskikh funktsii i ikh prilozheniya, Doktorskaya dissertatsiya, Moskva, 1972
[3] Yu. A. Kazmin, “K interpolyatsionnoi zadache Abelya”, Matem. zametki, 11:4 (1972), 353–364 | MR