On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 105-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a family of irreducible unitary representations of the group $G=C_0^\infty(X,SU_2)$ is constructed, where $X$ is an open set in $R^m$, $m\geqslant5$. The group $G$ consists of all infinitely differentiable mappings $X\to SU_2$ with compact support ($=I$ outside some compact set) and is furnished with pointwise multiplication. The author's construction is a modification of the well-known Araki construction. The representations constructed here act in the class of functional on a space dual to a nuclear space and furnished with a Gaussian measure. Bibliography: 7 titles.
@article{SM_1976_29_1_a7,
     author = {R. S. Ismagilov},
     title = {On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$},
     journal = {Sbornik. Mathematics},
     pages = {105--117},
     year = {1976},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 105
EP  - 117
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/
LA  - en
ID  - SM_1976_29_1_a7
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
%J Sbornik. Mathematics
%D 1976
%P 105-117
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/
%G en
%F SM_1976_29_1_a7
R. S. Ismagilov. On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/

[1] I. M. Gelfand, M. I. Graev, “Predstavleniya grupp kvaternionov nad lokalno kompaktnymi i funktsionalnymi polyami”, Funkts. analiz, 2:1 (1968), 20–35 | MR

[2] H. Araki, “Factorisable representations of current algebras”, Publ. RIMS, Kyoto University, Ser A, 5:3 (1970), 361–422 | DOI | MR | Zbl

[3] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $\mathrm{SL}(2,R)$, gde $R$ – koltso funktsii”, Uspekhi matem. nauk, XXIX:3(177) (1974), 3–41

[4] F. A. Berezin, “Kvantovanie”, Izv. AN SSSR, seriya matem., 38:5 (1974), 1116–1175 | MR | Zbl

[5] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, t. 1, izd-vo «Nauka», Moskva, 1971 | MR

[6] V. A. Ilin, “Yadra drobnogo poryadka”, Matem. sb., 41 (83) (1957), 459–480 | MR

[7] A. Guishardet, Simmetric Hilbert space and related topics, Lecture Notes in Math., 261, Springer-Verlag, Berlin, 1972