On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a family of irreducible unitary representations of the group $G=C_0^\infty(X,SU_2)$ is constructed, where $X$ is an open set in $R^m$, $m\geqslant5$. The group $G$ consists of all infinitely differentiable mappings $X\to SU_2$ with compact support ($=I$ outside some compact set) and is furnished with pointwise multiplication. The author's construction is a modification of the well-known Araki construction. The representations constructed here act in the class of functional on a space dual to a nuclear space and furnished with a Gaussian measure. Bibliography: 7 titles.
@article{SM_1976_29_1_a7,
     author = {R. S. Ismagilov},
     title = {On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$},
     journal = {Sbornik. Mathematics},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 105
EP  - 117
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/
LA  - en
ID  - SM_1976_29_1_a7
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$
%J Sbornik. Mathematics
%D 1976
%P 105-117
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/
%G en
%F SM_1976_29_1_a7
R. S. Ismagilov. On unitary representations of the group $C_0^\infty(X, G)$, $G=SU_2$. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a7/