On functionals with an infinite number of critical values
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we single out a class of even functional that have an infinite number of critical values that are stable under small perturbations by functional that do not have the property of being even. We give applications to the problem of periodic solutions of a system of ordinary differential equations and to the Dirichlet problem for quasilinear elliptic equations. The basis for the proof of most of the results is made up from the ideas of the method of monotone operators and a variant of the Lyusternik–Shnirel'man theory (cf. RZhMat., 1973, 10B730). Bibliography: 12 titles.
@article{SM_1976_29_1_a6,
     author = {V. S. Klimov},
     title = {On functionals with an infinite number of critical values},
     journal = {Sbornik. Mathematics},
     pages = {91--104},
     year = {1976},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a6/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - On functionals with an infinite number of critical values
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 91
EP  - 104
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a6/
LA  - en
ID  - SM_1976_29_1_a6
ER  - 
%0 Journal Article
%A V. S. Klimov
%T On functionals with an infinite number of critical values
%J Sbornik. Mathematics
%D 1976
%P 91-104
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a6/
%G en
%F SM_1976_29_1_a6
V. S. Klimov. On functionals with an infinite number of critical values. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 91-104. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a6/

[1] I. V. Skrypnik, Nelineinye ellipticheskie uravneniya vysshego poryadka, izd-vo «Naukova dumka», Kiev, 1973 | MR

[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov, izd-vo «Nauka», Moskva, 1972 | MR

[3] D. C. Clark, “A variant of the Ljusternik-Schnirelman theory”, Indiana Univ. Math. J., 22:1 (1972), 65–74 | DOI | MR | Zbl

[4] P. H. Rabinowitz, “Variational methods for nonlinear elliptic eigenvalue problems”, Indiana Univ. Math. J., 23:8 (1974), 729–754 | DOI | MR | Zbl

[5] A. Ambrosetti, “Esistenze di infinite soluzioni per problemi non lineari in assenza di parametro”, Atti Accad. naz. Lincei Rend., Cl. sci. fis. mat. e natur., 52:5 (1972), 660–667 | MR | Zbl

[6] V. D. Milman, “Geometricheskaya teoriya prostranstv Banakha”, Uspekhi matem. nauk, XXV:3 (153) (1970), 113–124 | MR

[7] M. S. Berger, “A Sturm-Liouville theorem for nonlinear elliptic differential equations”, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 543–582 | MR | Zbl

[8] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, Moskva, 1956 | MR

[9] A. S. Shvarts, “Rod rassloennogo prostranstva”, Trudy mosk. matem. ob-va, X (1961), 217–272

[10] C. V. Coffman, “A minimum-maximum principle for a class of nonlinear integral equations”, J. d'Anal. Math., 22 (1969), 391–419 | DOI | MR | Zbl

[11] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, izd-vo «Nauka», Moskva, 1974 | MR

[12] S. I. Pokhozhaev, “O teoreme vlozheniya Soboleva v sluchae $pl=n$”, Dokl. nauchno-tekhn. konf. energet. in-ta, sektsiya matem., 1965, 158–170