Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 55-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider curves having either a uniformization by the upper half-plane or a Mumford uniformization by discrete arithmetic subgroups of $PGL_2(k_w)$ corresponding to quaternion algebras with center $k$, with $k$ a global field of (possibly nonzero) characteristic $p$, $k$ being totally real if $p = 0$; $k_w$ is the completion of $k$ with respect to a valuation $w$ which is real or non-Archimedean. The principal result is a theorem that in characteristic $p = 0$ the curves corresponding to algebras related in a certain sense coincide. Bibliography: 10 titles.
@article{SM_1976_29_1_a4,
     author = {I. V. Cherednik},
     title = {Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients},
     journal = {Sbornik. Mathematics},
     pages = {55--78},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 55
EP  - 78
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/
LA  - en
ID  - SM_1976_29_1_a4
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients
%J Sbornik. Mathematics
%D 1976
%P 55-78
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/
%G en
%F SM_1976_29_1_a4
I. V. Cherednik. Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 55-78. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/