Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 55-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider curves having either a uniformization by the upper half-plane or a Mumford uniformization by discrete arithmetic subgroups of $PGL_2(k_w)$ corresponding to quaternion algebras with center $k$, with $k$ a global field of (possibly nonzero) characteristic $p$, $k$ being totally real if $p = 0$; $k_w$ is the completion of $k$ with respect to a valuation $w$ which is real or non-Archimedean. The principal result is a theorem that in characteristic $p = 0$ the curves corresponding to algebras related in a certain sense coincide.
Bibliography: 10 titles.
@article{SM_1976_29_1_a4,
author = {I. V. Cherednik},
title = {Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients},
journal = {Sbornik. Mathematics},
pages = {55--78},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/}
}
TY - JOUR AU - I. V. Cherednik TI - Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients JO - Sbornik. Mathematics PY - 1976 SP - 55 EP - 78 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/ LA - en ID - SM_1976_29_1_a4 ER -
I. V. Cherednik. Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 55-78. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a4/