Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 139-146
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a Jordan domain with smooth boundary, $f$ a function meromorphic in $D$, and $f^*$ the holomorphic component of $f$ in $D$. It is shown that $\|f^*\|_{\partial D}\leqslant C(D)n\|f\|_{\partial D}$, where $n$ is the number of poles of $f$ in $D$.
Bibliography: 8 titles.
@article{SM_1976_29_1_a10,
author = {L. D. Grigoryan},
title = {Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary},
journal = {Sbornik. Mathematics},
pages = {139--146},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/}
}
TY - JOUR AU - L. D. Grigoryan TI - Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary JO - Sbornik. Mathematics PY - 1976 SP - 139 EP - 146 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/ LA - en ID - SM_1976_29_1_a10 ER -
L. D. Grigoryan. Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/