Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 139-146

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a Jordan domain with smooth boundary, $f$ a function meromorphic in $D$, and $f^*$ the holomorphic component of $f$ in $D$. It is shown that $\|f^*\|_{\partial D}\leqslant C(D)n\|f\|_{\partial D}$, where $n$ is the number of poles of $f$ in $D$. Bibliography: 8 titles.
@article{SM_1976_29_1_a10,
     author = {L. D. Grigoryan},
     title = {Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary},
     journal = {Sbornik. Mathematics},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/}
}
TY  - JOUR
AU  - L. D. Grigoryan
TI  - Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 139
EP  - 146
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/
LA  - en
ID  - SM_1976_29_1_a10
ER  - 
%0 Journal Article
%A L. D. Grigoryan
%T Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary
%J Sbornik. Mathematics
%D 1976
%P 139-146
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/
%G en
%F SM_1976_29_1_a10
L. D. Grigoryan. Estimates of the norm of the holomorphic components of functions meromorphic in domains with a~smooth boundary. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a10/