On the boundary values of solutions of second-order elliptic equations
Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions are established under which a solution of an elliptic equation in a ball has a limit in the mean on the boundary sphere. Bibliography: 3 titles.
@article{SM_1976_29_1_a1,
     author = {V. P. Mikhailov},
     title = {On the boundary values of solutions of second-order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {3--11},
     year = {1976},
     volume = {29},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_29_1_a1/}
}
TY  - JOUR
AU  - V. P. Mikhailov
TI  - On the boundary values of solutions of second-order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 3
EP  - 11
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1976_29_1_a1/
LA  - en
ID  - SM_1976_29_1_a1
ER  - 
%0 Journal Article
%A V. P. Mikhailov
%T On the boundary values of solutions of second-order elliptic equations
%J Sbornik. Mathematics
%D 1976
%P 3-11
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1976_29_1_a1/
%G en
%F SM_1976_29_1_a1
V. P. Mikhailov. On the boundary values of solutions of second-order elliptic equations. Sbornik. Mathematics, Tome 29 (1976) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/SM_1976_29_1_a1/

[1] V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, DAN SSSR, 226:6 (1976)

[2] A. Zigmund, Trigonometricheskie ryady, t. 2, izd-vo «Mir», Moskva, 1965 | MR

[3] S. V. Uspenskii, “O teoremakh vlozheniya dlya obobschennykh klassov $W_p^l$ Soboleva”, Sib. matem. zh., III:3 (1962), 418–445 | MR