On estimates of the norm of the holomorphic component of a meromorphic function
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 571-575 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary simply connected domain $D$, an estimate is obtained for the norm of the holomorphic component of a meromorphic function having a given number of poles in $D$. The estimate is uniform with respect to $D$. Bibliography: 4 titles.
@article{SM_1976_28_4_a9,
     author = {A. A. Gonchar and L. D. Grigoryan},
     title = {On estimates of the norm of the holomorphic component of a~meromorphic function},
     journal = {Sbornik. Mathematics},
     pages = {571--575},
     year = {1976},
     volume = {28},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/}
}
TY  - JOUR
AU  - A. A. Gonchar
AU  - L. D. Grigoryan
TI  - On estimates of the norm of the holomorphic component of a meromorphic function
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 571
EP  - 575
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/
LA  - en
ID  - SM_1976_28_4_a9
ER  - 
%0 Journal Article
%A A. A. Gonchar
%A L. D. Grigoryan
%T On estimates of the norm of the holomorphic component of a meromorphic function
%J Sbornik. Mathematics
%D 1976
%P 571-575
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/
%G en
%F SM_1976_28_4_a9
A. A. Gonchar; L. D. Grigoryan. On estimates of the norm of the holomorphic component of a meromorphic function. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 571-575. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/

[1] S. I. Poreda, E. B. Saff, G. S. Shapiro, “Fundamental constants for rational functions”, Trans. Amer. Math. Soc., 189 (1974), 351–358 | DOI | MR | Zbl

[2] L. D. Grigoryan, “Otsenki normy golomorfnykh sostavlyayuschikh, meromorfnykh funktsii v oblastyakh s gladkoi granitsei”, Matem. sb., 100 (142) (1976), 156–164 | Zbl

[3] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo «Nauka», Moskva, 1966 | MR

[4] T. Kövari, Ch. Pommerenke, “On Faber Polynomials and Faber Expansions”, Math. Z., 99 (1967), 193–206 | DOI | MR | Zbl