On estimates of the norm of the holomorphic component of a meromorphic function
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 571-575
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary simply connected domain $D$, an estimate is obtained for the norm of the holomorphic component of a meromorphic function having a given number of poles in $D$. The estimate is uniform with respect to $D$. Bibliography: 4 titles.
@article{SM_1976_28_4_a9,
author = {A. A. Gonchar and L. D. Grigoryan},
title = {On estimates of the norm of the holomorphic component of a~meromorphic function},
journal = {Sbornik. Mathematics},
pages = {571--575},
year = {1976},
volume = {28},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/}
}
A. A. Gonchar; L. D. Grigoryan. On estimates of the norm of the holomorphic component of a meromorphic function. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 571-575. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a9/
[1] S. I. Poreda, E. B. Saff, G. S. Shapiro, “Fundamental constants for rational functions”, Trans. Amer. Math. Soc., 189 (1974), 351–358 | DOI | MR | Zbl
[2] L. D. Grigoryan, “Otsenki normy golomorfnykh sostavlyayuschikh, meromorfnykh funktsii v oblastyakh s gladkoi granitsei”, Matem. sb., 100 (142) (1976), 156–164 | Zbl
[3] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, izd-vo «Nauka», Moskva, 1966 | MR
[4] T. Kövari, Ch. Pommerenke, “On Faber Polynomials and Faber Expansions”, Math. Z., 99 (1967), 193–206 | DOI | MR | Zbl