Embedding compacta in Euclidean space of dimension~$5$, $4$ and~$3$
Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 563-569

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper results concerning the notion of dimension of an embedding, earlier obtained for embeddings of compacta in Euclidean space $E_n$ for $n\geqslant6$, are extended to the case $n=5$. For $n=4$ a reduction of the main problem to the so-called open four-dimensional Poincaré conjecture is given, and some sufficient conditions are given for $n=3$. Bibliography: 14 titles.
@article{SM_1976_28_4_a8,
     author = {M. A. Shtan'ko},
     title = {Embedding compacta in {Euclidean} space of dimension~$5$, $4$ and~$3$},
     journal = {Sbornik. Mathematics},
     pages = {563--569},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1976_28_4_a8/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - Embedding compacta in Euclidean space of dimension~$5$, $4$ and~$3$
JO  - Sbornik. Mathematics
PY  - 1976
SP  - 563
EP  - 569
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1976_28_4_a8/
LA  - en
ID  - SM_1976_28_4_a8
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T Embedding compacta in Euclidean space of dimension~$5$, $4$ and~$3$
%J Sbornik. Mathematics
%D 1976
%P 563-569
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1976_28_4_a8/
%G en
%F SM_1976_28_4_a8
M. A. Shtan'ko. Embedding compacta in Euclidean space of dimension~$5$, $4$ and~$3$. Sbornik. Mathematics, Tome 28 (1976) no. 4, pp. 563-569. http://geodesic.mathdoc.fr/item/SM_1976_28_4_a8/